MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzval Structured version   Visualization version   GIF version

Theorem cntzval 19200
Description: Definition substitution for a centralizer. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
cntzfval.b 𝐵 = (Base‘𝑀)
cntzfval.p + = (+g𝑀)
cntzfval.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntzval (𝑆𝐵 → (𝑍𝑆) = {𝑥𝐵 ∣ ∀𝑦𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)})
Distinct variable groups:   𝑥,𝑦, +   𝑥,𝐵   𝑥,𝑀,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐵(𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem cntzval
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 cntzfval.b . . . . 5 𝐵 = (Base‘𝑀)
2 cntzfval.p . . . . 5 + = (+g𝑀)
3 cntzfval.z . . . . 5 𝑍 = (Cntz‘𝑀)
41, 2, 3cntzfval 19199 . . . 4 (𝑀 ∈ V → 𝑍 = (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥𝐵 ∣ ∀𝑦𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)}))
54fveq1d 6824 . . 3 (𝑀 ∈ V → (𝑍𝑆) = ((𝑠 ∈ 𝒫 𝐵 ↦ {𝑥𝐵 ∣ ∀𝑦𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)})‘𝑆))
61fvexi 6836 . . . . 5 𝐵 ∈ V
76elpw2 5273 . . . 4 (𝑆 ∈ 𝒫 𝐵𝑆𝐵)
8 raleq 3286 . . . . . 6 (𝑠 = 𝑆 → (∀𝑦𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ ∀𝑦𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
98rabbidv 3402 . . . . 5 (𝑠 = 𝑆 → {𝑥𝐵 ∣ ∀𝑦𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)} = {𝑥𝐵 ∣ ∀𝑦𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)})
10 eqid 2729 . . . . 5 (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥𝐵 ∣ ∀𝑦𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)}) = (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥𝐵 ∣ ∀𝑦𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)})
116rabex 5278 . . . . 5 {𝑥𝐵 ∣ ∀𝑦𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)} ∈ V
129, 10, 11fvmpt 6930 . . . 4 (𝑆 ∈ 𝒫 𝐵 → ((𝑠 ∈ 𝒫 𝐵 ↦ {𝑥𝐵 ∣ ∀𝑦𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)})‘𝑆) = {𝑥𝐵 ∣ ∀𝑦𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)})
137, 12sylbir 235 . . 3 (𝑆𝐵 → ((𝑠 ∈ 𝒫 𝐵 ↦ {𝑥𝐵 ∣ ∀𝑦𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)})‘𝑆) = {𝑥𝐵 ∣ ∀𝑦𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)})
145, 13sylan9eq 2784 . 2 ((𝑀 ∈ V ∧ 𝑆𝐵) → (𝑍𝑆) = {𝑥𝐵 ∣ ∀𝑦𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)})
15 0fv 6864 . . . 4 (∅‘𝑆) = ∅
16 fvprc 6814 . . . . . 6 𝑀 ∈ V → (Cntz‘𝑀) = ∅)
173, 16eqtrid 2776 . . . . 5 𝑀 ∈ V → 𝑍 = ∅)
1817fveq1d 6824 . . . 4 𝑀 ∈ V → (𝑍𝑆) = (∅‘𝑆))
19 ssrab2 4031 . . . . . 6 {𝑥𝐵 ∣ ∀𝑦𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)} ⊆ 𝐵
20 fvprc 6814 . . . . . . 7 𝑀 ∈ V → (Base‘𝑀) = ∅)
211, 20eqtrid 2776 . . . . . 6 𝑀 ∈ V → 𝐵 = ∅)
2219, 21sseqtrid 3978 . . . . 5 𝑀 ∈ V → {𝑥𝐵 ∣ ∀𝑦𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)} ⊆ ∅)
23 ss0 4353 . . . . 5 ({𝑥𝐵 ∣ ∀𝑦𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)} ⊆ ∅ → {𝑥𝐵 ∣ ∀𝑦𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)} = ∅)
2422, 23syl 17 . . . 4 𝑀 ∈ V → {𝑥𝐵 ∣ ∀𝑦𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)} = ∅)
2515, 18, 243eqtr4a 2790 . . 3 𝑀 ∈ V → (𝑍𝑆) = {𝑥𝐵 ∣ ∀𝑦𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)})
2625adantr 480 . 2 ((¬ 𝑀 ∈ V ∧ 𝑆𝐵) → (𝑍𝑆) = {𝑥𝐵 ∣ ∀𝑦𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)})
2714, 26pm2.61ian 811 1 (𝑆𝐵 → (𝑍𝑆) = {𝑥𝐵 ∣ ∀𝑦𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  wral 3044  {crab 3394  Vcvv 3436  wss 3903  c0 4284  𝒫 cpw 4551  cmpt 5173  cfv 6482  (class class class)co 7349  Basecbs 17120  +gcplusg 17161  Cntzccntz 19194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-cntz 19196
This theorem is referenced by:  elcntz  19201  cntzsnval  19203  sscntz  19205  cntzssv  19207  cntziinsn  19216  cmnbascntr  19684
  Copyright terms: Public domain W3C validator