![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cntzel | Structured version Visualization version GIF version |
Description: Membership in a centralizer. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
Ref | Expression |
---|---|
cntzfval.b | ⊢ 𝐵 = (Base‘𝑀) |
cntzfval.p | ⊢ + = (+g‘𝑀) |
cntzfval.z | ⊢ 𝑍 = (Cntz‘𝑀) |
Ref | Expression |
---|---|
cntzel | ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ (𝑍‘𝑆) ↔ ∀𝑦 ∈ 𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntzfval.b | . . 3 ⊢ 𝐵 = (Base‘𝑀) | |
2 | cntzfval.p | . . 3 ⊢ + = (+g‘𝑀) | |
3 | cntzfval.z | . . 3 ⊢ 𝑍 = (Cntz‘𝑀) | |
4 | 1, 2, 3 | elcntz 18066 | . 2 ⊢ (𝑆 ⊆ 𝐵 → (𝑋 ∈ (𝑍‘𝑆) ↔ (𝑋 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋)))) |
5 | 4 | baibd 536 | 1 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ (𝑍‘𝑆) ↔ ∀𝑦 ∈ 𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∀wral 3090 ⊆ wss 3770 ‘cfv 6102 (class class class)co 6879 Basecbs 16183 +gcplusg 16266 Cntzccntz 18059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-rep 4965 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-iun 4713 df-br 4845 df-opab 4907 df-mpt 4924 df-id 5221 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-ov 6882 df-cntz 18061 |
This theorem is referenced by: cntzsubg 18080 cntzcmn 18559 cntzsubr 19129 cntzsdrg 38552 |
Copyright terms: Public domain | W3C validator |