MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elcntz Structured version   Visualization version   GIF version

Theorem elcntz 19236
Description: Elementhood in the centralizer. (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
cntzfval.b 𝐵 = (Base‘𝑀)
cntzfval.p + = (+g𝑀)
cntzfval.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
elcntz (𝑆𝐵 → (𝐴 ∈ (𝑍𝑆) ↔ (𝐴𝐵 ∧ ∀𝑦𝑆 (𝐴 + 𝑦) = (𝑦 + 𝐴))))
Distinct variable groups:   𝑦, +   𝑦,𝐴   𝑦,𝑀   𝑦,𝑆
Allowed substitution hints:   𝐵(𝑦)   𝑍(𝑦)

Proof of Theorem elcntz
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cntzfval.b . . . 4 𝐵 = (Base‘𝑀)
2 cntzfval.p . . . 4 + = (+g𝑀)
3 cntzfval.z . . . 4 𝑍 = (Cntz‘𝑀)
41, 2, 3cntzval 19235 . . 3 (𝑆𝐵 → (𝑍𝑆) = {𝑥𝐵 ∣ ∀𝑦𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)})
54eleq2d 2814 . 2 (𝑆𝐵 → (𝐴 ∈ (𝑍𝑆) ↔ 𝐴 ∈ {𝑥𝐵 ∣ ∀𝑦𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)}))
6 oveq1 7376 . . . . 5 (𝑥 = 𝐴 → (𝑥 + 𝑦) = (𝐴 + 𝑦))
7 oveq2 7377 . . . . 5 (𝑥 = 𝐴 → (𝑦 + 𝑥) = (𝑦 + 𝐴))
86, 7eqeq12d 2745 . . . 4 (𝑥 = 𝐴 → ((𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ (𝐴 + 𝑦) = (𝑦 + 𝐴)))
98ralbidv 3156 . . 3 (𝑥 = 𝐴 → (∀𝑦𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ ∀𝑦𝑆 (𝐴 + 𝑦) = (𝑦 + 𝐴)))
109elrab 3656 . 2 (𝐴 ∈ {𝑥𝐵 ∣ ∀𝑦𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)} ↔ (𝐴𝐵 ∧ ∀𝑦𝑆 (𝐴 + 𝑦) = (𝑦 + 𝐴)))
115, 10bitrdi 287 1 (𝑆𝐵 → (𝐴 ∈ (𝑍𝑆) ↔ (𝐴𝐵 ∧ ∀𝑦𝑆 (𝐴 + 𝑦) = (𝑦 + 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3402  wss 3911  cfv 6499  (class class class)co 7369  Basecbs 17155  +gcplusg 17196  Cntzccntz 19229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-cntz 19231
This theorem is referenced by:  cntzel  19237  cntzi  19243  elcntr  19244  resscntz  19247  cntzsgrpcl  19248  cntzsubm  19252  cntzmhm  19255  oppgcntz  19278  dprdfcntz  19931  rng2idl1cntr  21247  cntzun  33051
  Copyright terms: Public domain W3C validator