Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elcntz | Structured version Visualization version GIF version |
Description: Elementhood in the centralizer. (Contributed by Mario Carneiro, 22-Sep-2015.) |
Ref | Expression |
---|---|
cntzfval.b | ⊢ 𝐵 = (Base‘𝑀) |
cntzfval.p | ⊢ + = (+g‘𝑀) |
cntzfval.z | ⊢ 𝑍 = (Cntz‘𝑀) |
Ref | Expression |
---|---|
elcntz | ⊢ (𝑆 ⊆ 𝐵 → (𝐴 ∈ (𝑍‘𝑆) ↔ (𝐴 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝑆 (𝐴 + 𝑦) = (𝑦 + 𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntzfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
2 | cntzfval.p | . . . 4 ⊢ + = (+g‘𝑀) | |
3 | cntzfval.z | . . . 4 ⊢ 𝑍 = (Cntz‘𝑀) | |
4 | 1, 2, 3 | cntzval 18715 | . . 3 ⊢ (𝑆 ⊆ 𝐵 → (𝑍‘𝑆) = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)}) |
5 | 4 | eleq2d 2823 | . 2 ⊢ (𝑆 ⊆ 𝐵 → (𝐴 ∈ (𝑍‘𝑆) ↔ 𝐴 ∈ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)})) |
6 | oveq1 7220 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 + 𝑦) = (𝐴 + 𝑦)) | |
7 | oveq2 7221 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑦 + 𝑥) = (𝑦 + 𝐴)) | |
8 | 6, 7 | eqeq12d 2753 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ (𝐴 + 𝑦) = (𝑦 + 𝐴))) |
9 | 8 | ralbidv 3118 | . . 3 ⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ ∀𝑦 ∈ 𝑆 (𝐴 + 𝑦) = (𝑦 + 𝐴))) |
10 | 9 | elrab 3602 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)} ↔ (𝐴 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝑆 (𝐴 + 𝑦) = (𝑦 + 𝐴))) |
11 | 5, 10 | bitrdi 290 | 1 ⊢ (𝑆 ⊆ 𝐵 → (𝐴 ∈ (𝑍‘𝑆) ↔ (𝐴 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝑆 (𝐴 + 𝑦) = (𝑦 + 𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∀wral 3061 {crab 3065 ⊆ wss 3866 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 +gcplusg 16802 Cntzccntz 18709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-cntz 18711 |
This theorem is referenced by: cntzel 18717 cntzi 18723 resscntz 18726 cntzsubm 18730 cntzmhm 18733 oppgcntz 18756 dprdfcntz 19402 cntzun 31039 |
Copyright terms: Public domain | W3C validator |