MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elcntz Structured version   Visualization version   GIF version

Theorem elcntz 19261
Description: Elementhood in the centralizer. (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
cntzfval.b 𝐵 = (Base‘𝑀)
cntzfval.p + = (+g𝑀)
cntzfval.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
elcntz (𝑆𝐵 → (𝐴 ∈ (𝑍𝑆) ↔ (𝐴𝐵 ∧ ∀𝑦𝑆 (𝐴 + 𝑦) = (𝑦 + 𝐴))))
Distinct variable groups:   𝑦, +   𝑦,𝐴   𝑦,𝑀   𝑦,𝑆
Allowed substitution hints:   𝐵(𝑦)   𝑍(𝑦)

Proof of Theorem elcntz
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cntzfval.b . . . 4 𝐵 = (Base‘𝑀)
2 cntzfval.p . . . 4 + = (+g𝑀)
3 cntzfval.z . . . 4 𝑍 = (Cntz‘𝑀)
41, 2, 3cntzval 19260 . . 3 (𝑆𝐵 → (𝑍𝑆) = {𝑥𝐵 ∣ ∀𝑦𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)})
54eleq2d 2815 . 2 (𝑆𝐵 → (𝐴 ∈ (𝑍𝑆) ↔ 𝐴 ∈ {𝑥𝐵 ∣ ∀𝑦𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)}))
6 oveq1 7397 . . . . 5 (𝑥 = 𝐴 → (𝑥 + 𝑦) = (𝐴 + 𝑦))
7 oveq2 7398 . . . . 5 (𝑥 = 𝐴 → (𝑦 + 𝑥) = (𝑦 + 𝐴))
86, 7eqeq12d 2746 . . . 4 (𝑥 = 𝐴 → ((𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ (𝐴 + 𝑦) = (𝑦 + 𝐴)))
98ralbidv 3157 . . 3 (𝑥 = 𝐴 → (∀𝑦𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ ∀𝑦𝑆 (𝐴 + 𝑦) = (𝑦 + 𝐴)))
109elrab 3662 . 2 (𝐴 ∈ {𝑥𝐵 ∣ ∀𝑦𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)} ↔ (𝐴𝐵 ∧ ∀𝑦𝑆 (𝐴 + 𝑦) = (𝑦 + 𝐴)))
115, 10bitrdi 287 1 (𝑆𝐵 → (𝐴 ∈ (𝑍𝑆) ↔ (𝐴𝐵 ∧ ∀𝑦𝑆 (𝐴 + 𝑦) = (𝑦 + 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  {crab 3408  wss 3917  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  Cntzccntz 19254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-cntz 19256
This theorem is referenced by:  cntzel  19262  cntzi  19268  elcntr  19269  resscntz  19272  cntzsgrpcl  19273  cntzsubm  19277  cntzmhm  19280  oppgcntz  19303  dprdfcntz  19954  rng2idl1cntr  21222  cntzun  33015
  Copyright terms: Public domain W3C validator