![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elcntz | Structured version Visualization version GIF version |
Description: Elementhood in the centralizer. (Contributed by Mario Carneiro, 22-Sep-2015.) |
Ref | Expression |
---|---|
cntzfval.b | ⊢ 𝐵 = (Base‘𝑀) |
cntzfval.p | ⊢ + = (+g‘𝑀) |
cntzfval.z | ⊢ 𝑍 = (Cntz‘𝑀) |
Ref | Expression |
---|---|
elcntz | ⊢ (𝑆 ⊆ 𝐵 → (𝐴 ∈ (𝑍‘𝑆) ↔ (𝐴 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝑆 (𝐴 + 𝑦) = (𝑦 + 𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntzfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
2 | cntzfval.p | . . . 4 ⊢ + = (+g‘𝑀) | |
3 | cntzfval.z | . . . 4 ⊢ 𝑍 = (Cntz‘𝑀) | |
4 | 1, 2, 3 | cntzval 19227 | . . 3 ⊢ (𝑆 ⊆ 𝐵 → (𝑍‘𝑆) = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)}) |
5 | 4 | eleq2d 2818 | . 2 ⊢ (𝑆 ⊆ 𝐵 → (𝐴 ∈ (𝑍‘𝑆) ↔ 𝐴 ∈ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)})) |
6 | oveq1 7419 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 + 𝑦) = (𝐴 + 𝑦)) | |
7 | oveq2 7420 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑦 + 𝑥) = (𝑦 + 𝐴)) | |
8 | 6, 7 | eqeq12d 2747 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ (𝐴 + 𝑦) = (𝑦 + 𝐴))) |
9 | 8 | ralbidv 3176 | . . 3 ⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ ∀𝑦 ∈ 𝑆 (𝐴 + 𝑦) = (𝑦 + 𝐴))) |
10 | 9 | elrab 3683 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)} ↔ (𝐴 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝑆 (𝐴 + 𝑦) = (𝑦 + 𝐴))) |
11 | 5, 10 | bitrdi 287 | 1 ⊢ (𝑆 ⊆ 𝐵 → (𝐴 ∈ (𝑍‘𝑆) ↔ (𝐴 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝑆 (𝐴 + 𝑦) = (𝑦 + 𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∀wral 3060 {crab 3431 ⊆ wss 3948 ‘cfv 6543 (class class class)co 7412 Basecbs 17149 +gcplusg 17202 Cntzccntz 19221 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-cntz 19223 |
This theorem is referenced by: cntzel 19229 cntzi 19235 elcntr 19236 resscntz 19239 cntzsgrpcl 19240 cntzsubm 19244 cntzmhm 19247 oppgcntz 19273 dprdfcntz 19927 rng2idl1cntr 21065 cntzun 32483 |
Copyright terms: Public domain | W3C validator |