MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elcntz Structured version   Visualization version   GIF version

Theorem elcntz 18843
Description: Elementhood in the centralizer. (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
cntzfval.b 𝐵 = (Base‘𝑀)
cntzfval.p + = (+g𝑀)
cntzfval.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
elcntz (𝑆𝐵 → (𝐴 ∈ (𝑍𝑆) ↔ (𝐴𝐵 ∧ ∀𝑦𝑆 (𝐴 + 𝑦) = (𝑦 + 𝐴))))
Distinct variable groups:   𝑦, +   𝑦,𝐴   𝑦,𝑀   𝑦,𝑆
Allowed substitution hints:   𝐵(𝑦)   𝑍(𝑦)

Proof of Theorem elcntz
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cntzfval.b . . . 4 𝐵 = (Base‘𝑀)
2 cntzfval.p . . . 4 + = (+g𝑀)
3 cntzfval.z . . . 4 𝑍 = (Cntz‘𝑀)
41, 2, 3cntzval 18842 . . 3 (𝑆𝐵 → (𝑍𝑆) = {𝑥𝐵 ∣ ∀𝑦𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)})
54eleq2d 2824 . 2 (𝑆𝐵 → (𝐴 ∈ (𝑍𝑆) ↔ 𝐴 ∈ {𝑥𝐵 ∣ ∀𝑦𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)}))
6 oveq1 7262 . . . . 5 (𝑥 = 𝐴 → (𝑥 + 𝑦) = (𝐴 + 𝑦))
7 oveq2 7263 . . . . 5 (𝑥 = 𝐴 → (𝑦 + 𝑥) = (𝑦 + 𝐴))
86, 7eqeq12d 2754 . . . 4 (𝑥 = 𝐴 → ((𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ (𝐴 + 𝑦) = (𝑦 + 𝐴)))
98ralbidv 3120 . . 3 (𝑥 = 𝐴 → (∀𝑦𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ ∀𝑦𝑆 (𝐴 + 𝑦) = (𝑦 + 𝐴)))
109elrab 3617 . 2 (𝐴 ∈ {𝑥𝐵 ∣ ∀𝑦𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)} ↔ (𝐴𝐵 ∧ ∀𝑦𝑆 (𝐴 + 𝑦) = (𝑦 + 𝐴)))
115, 10bitrdi 286 1 (𝑆𝐵 → (𝐴 ∈ (𝑍𝑆) ↔ (𝐴𝐵 ∧ ∀𝑦𝑆 (𝐴 + 𝑦) = (𝑦 + 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  {crab 3067  wss 3883  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  Cntzccntz 18836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-cntz 18838
This theorem is referenced by:  cntzel  18844  cntzi  18850  resscntz  18853  cntzsubm  18857  cntzmhm  18860  oppgcntz  18886  dprdfcntz  19533  cntzun  31222
  Copyright terms: Public domain W3C validator