![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elcntz | Structured version Visualization version GIF version |
Description: Elementhood in the centralizer. (Contributed by Mario Carneiro, 22-Sep-2015.) |
Ref | Expression |
---|---|
cntzfval.b | ⊢ 𝐵 = (Base‘𝑀) |
cntzfval.p | ⊢ + = (+g‘𝑀) |
cntzfval.z | ⊢ 𝑍 = (Cntz‘𝑀) |
Ref | Expression |
---|---|
elcntz | ⊢ (𝑆 ⊆ 𝐵 → (𝐴 ∈ (𝑍‘𝑆) ↔ (𝐴 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝑆 (𝐴 + 𝑦) = (𝑦 + 𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntzfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
2 | cntzfval.p | . . . 4 ⊢ + = (+g‘𝑀) | |
3 | cntzfval.z | . . . 4 ⊢ 𝑍 = (Cntz‘𝑀) | |
4 | 1, 2, 3 | cntzval 18104 | . . 3 ⊢ (𝑆 ⊆ 𝐵 → (𝑍‘𝑆) = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)}) |
5 | 4 | eleq2d 2892 | . 2 ⊢ (𝑆 ⊆ 𝐵 → (𝐴 ∈ (𝑍‘𝑆) ↔ 𝐴 ∈ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)})) |
6 | oveq1 6912 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 + 𝑦) = (𝐴 + 𝑦)) | |
7 | oveq2 6913 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑦 + 𝑥) = (𝑦 + 𝐴)) | |
8 | 6, 7 | eqeq12d 2840 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ (𝐴 + 𝑦) = (𝑦 + 𝐴))) |
9 | 8 | ralbidv 3195 | . . 3 ⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ ∀𝑦 ∈ 𝑆 (𝐴 + 𝑦) = (𝑦 + 𝐴))) |
10 | 9 | elrab 3585 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)} ↔ (𝐴 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝑆 (𝐴 + 𝑦) = (𝑦 + 𝐴))) |
11 | 5, 10 | syl6bb 279 | 1 ⊢ (𝑆 ⊆ 𝐵 → (𝐴 ∈ (𝑍‘𝑆) ↔ (𝐴 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝑆 (𝐴 + 𝑦) = (𝑦 + 𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ∀wral 3117 {crab 3121 ⊆ wss 3798 ‘cfv 6123 (class class class)co 6905 Basecbs 16222 +gcplusg 16305 Cntzccntz 18098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-ov 6908 df-cntz 18100 |
This theorem is referenced by: cntzel 18106 cntzi 18112 resscntz 18114 cntzsubm 18118 cntzmhm 18121 oppgcntz 18144 dprdfcntz 18768 |
Copyright terms: Public domain | W3C validator |