![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > comfffn | Structured version Visualization version GIF version |
Description: The functionalized composition operation is a function. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
comfffn.o | ⊢ 𝑂 = (compf‘𝐶) |
comfffn.b | ⊢ 𝐵 = (Base‘𝐶) |
Ref | Expression |
---|---|
comfffn | ⊢ 𝑂 Fn ((𝐵 × 𝐵) × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | comfffn.o | . . 3 ⊢ 𝑂 = (compf‘𝐶) | |
2 | comfffn.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
3 | eqid 2728 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
4 | eqid 2728 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
5 | 1, 2, 3, 4 | comfffval 17678 | . 2 ⊢ 𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝐶)𝑦), 𝑓 ∈ ((Hom ‘𝐶)‘𝑥) ↦ (𝑔(𝑥(comp‘𝐶)𝑦)𝑓))) |
6 | ovex 7453 | . . 3 ⊢ ((2nd ‘𝑥)(Hom ‘𝐶)𝑦) ∈ V | |
7 | fvex 6910 | . . 3 ⊢ ((Hom ‘𝐶)‘𝑥) ∈ V | |
8 | 6, 7 | mpoex 8084 | . 2 ⊢ (𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝐶)𝑦), 𝑓 ∈ ((Hom ‘𝐶)‘𝑥) ↦ (𝑔(𝑥(comp‘𝐶)𝑦)𝑓)) ∈ V |
9 | 5, 8 | fnmpoi 8074 | 1 ⊢ 𝑂 Fn ((𝐵 × 𝐵) × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 × cxp 5676 Fn wfn 6543 ‘cfv 6548 (class class class)co 7420 ∈ cmpo 7422 2nd c2nd 7992 Basecbs 17180 Hom chom 17244 compcco 17245 compfccomf 17647 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-oprab 7424 df-mpo 7425 df-1st 7993 df-2nd 7994 df-comf 17651 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |