![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > comfffn | Structured version Visualization version GIF version |
Description: The functionalized composition operation is a function. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
comfffn.o | ⊢ 𝑂 = (compf‘𝐶) |
comfffn.b | ⊢ 𝐵 = (Base‘𝐶) |
Ref | Expression |
---|---|
comfffn | ⊢ 𝑂 Fn ((𝐵 × 𝐵) × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | comfffn.o | . . 3 ⊢ 𝑂 = (compf‘𝐶) | |
2 | comfffn.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
3 | eqid 2740 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
4 | eqid 2740 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
5 | 1, 2, 3, 4 | comfffval 17758 | . 2 ⊢ 𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝐶)𝑦), 𝑓 ∈ ((Hom ‘𝐶)‘𝑥) ↦ (𝑔(𝑥(comp‘𝐶)𝑦)𝑓))) |
6 | ovex 7483 | . . 3 ⊢ ((2nd ‘𝑥)(Hom ‘𝐶)𝑦) ∈ V | |
7 | fvex 6935 | . . 3 ⊢ ((Hom ‘𝐶)‘𝑥) ∈ V | |
8 | 6, 7 | mpoex 8122 | . 2 ⊢ (𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝐶)𝑦), 𝑓 ∈ ((Hom ‘𝐶)‘𝑥) ↦ (𝑔(𝑥(comp‘𝐶)𝑦)𝑓)) ∈ V |
9 | 5, 8 | fnmpoi 8113 | 1 ⊢ 𝑂 Fn ((𝐵 × 𝐵) × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 × cxp 5698 Fn wfn 6570 ‘cfv 6575 (class class class)co 7450 ∈ cmpo 7452 2nd c2nd 8031 Basecbs 17260 Hom chom 17324 compcco 17325 compfccomf 17727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-ov 7453 df-oprab 7454 df-mpo 7455 df-1st 8032 df-2nd 8033 df-comf 17731 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |