Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > comfffn | Structured version Visualization version GIF version |
Description: The functionalized composition operation is a function. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
comfffn.o | ⊢ 𝑂 = (compf‘𝐶) |
comfffn.b | ⊢ 𝐵 = (Base‘𝐶) |
Ref | Expression |
---|---|
comfffn | ⊢ 𝑂 Fn ((𝐵 × 𝐵) × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | comfffn.o | . . 3 ⊢ 𝑂 = (compf‘𝐶) | |
2 | comfffn.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
3 | eqid 2758 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
4 | eqid 2758 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
5 | 1, 2, 3, 4 | comfffval 17039 | . 2 ⊢ 𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝐶)𝑦), 𝑓 ∈ ((Hom ‘𝐶)‘𝑥) ↦ (𝑔(𝑥(comp‘𝐶)𝑦)𝑓))) |
6 | ovex 7189 | . . 3 ⊢ ((2nd ‘𝑥)(Hom ‘𝐶)𝑦) ∈ V | |
7 | fvex 6676 | . . 3 ⊢ ((Hom ‘𝐶)‘𝑥) ∈ V | |
8 | 6, 7 | mpoex 7788 | . 2 ⊢ (𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝐶)𝑦), 𝑓 ∈ ((Hom ‘𝐶)‘𝑥) ↦ (𝑔(𝑥(comp‘𝐶)𝑦)𝑓)) ∈ V |
9 | 5, 8 | fnmpoi 7778 | 1 ⊢ 𝑂 Fn ((𝐵 × 𝐵) × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 × cxp 5526 Fn wfn 6335 ‘cfv 6340 (class class class)co 7156 ∈ cmpo 7158 2nd c2nd 7698 Basecbs 16554 Hom chom 16647 compcco 16648 compfccomf 17009 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-ov 7159 df-oprab 7160 df-mpo 7161 df-1st 7699 df-2nd 7700 df-comf 17013 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |