| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > comfffn | Structured version Visualization version GIF version | ||
| Description: The functionalized composition operation is a function. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| comfffn.o | ⊢ 𝑂 = (compf‘𝐶) |
| comfffn.b | ⊢ 𝐵 = (Base‘𝐶) |
| Ref | Expression |
|---|---|
| comfffn | ⊢ 𝑂 Fn ((𝐵 × 𝐵) × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | comfffn.o | . . 3 ⊢ 𝑂 = (compf‘𝐶) | |
| 2 | comfffn.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | eqid 2734 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 4 | eqid 2734 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 5 | 1, 2, 3, 4 | comfffval 17712 | . 2 ⊢ 𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝐶)𝑦), 𝑓 ∈ ((Hom ‘𝐶)‘𝑥) ↦ (𝑔(𝑥(comp‘𝐶)𝑦)𝑓))) |
| 6 | ovex 7446 | . . 3 ⊢ ((2nd ‘𝑥)(Hom ‘𝐶)𝑦) ∈ V | |
| 7 | fvex 6899 | . . 3 ⊢ ((Hom ‘𝐶)‘𝑥) ∈ V | |
| 8 | 6, 7 | mpoex 8086 | . 2 ⊢ (𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝐶)𝑦), 𝑓 ∈ ((Hom ‘𝐶)‘𝑥) ↦ (𝑔(𝑥(comp‘𝐶)𝑦)𝑓)) ∈ V |
| 9 | 5, 8 | fnmpoi 8077 | 1 ⊢ 𝑂 Fn ((𝐵 × 𝐵) × 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 × cxp 5663 Fn wfn 6536 ‘cfv 6541 (class class class)co 7413 ∈ cmpo 7415 2nd c2nd 7995 Basecbs 17229 Hom chom 17284 compcco 17285 compfccomf 17681 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7996 df-2nd 7997 df-comf 17685 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |