![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > comfffn | Structured version Visualization version GIF version |
Description: The functionalized composition operation is a function. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
comfffn.o | ⊢ 𝑂 = (compf‘𝐶) |
comfffn.b | ⊢ 𝐵 = (Base‘𝐶) |
Ref | Expression |
---|---|
comfffn | ⊢ 𝑂 Fn ((𝐵 × 𝐵) × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | comfffn.o | . . 3 ⊢ 𝑂 = (compf‘𝐶) | |
2 | comfffn.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
3 | eqid 2730 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
4 | eqid 2730 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
5 | 1, 2, 3, 4 | comfffval 17646 | . 2 ⊢ 𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝐶)𝑦), 𝑓 ∈ ((Hom ‘𝐶)‘𝑥) ↦ (𝑔(𝑥(comp‘𝐶)𝑦)𝑓))) |
6 | ovex 7444 | . . 3 ⊢ ((2nd ‘𝑥)(Hom ‘𝐶)𝑦) ∈ V | |
7 | fvex 6903 | . . 3 ⊢ ((Hom ‘𝐶)‘𝑥) ∈ V | |
8 | 6, 7 | mpoex 8068 | . 2 ⊢ (𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝐶)𝑦), 𝑓 ∈ ((Hom ‘𝐶)‘𝑥) ↦ (𝑔(𝑥(comp‘𝐶)𝑦)𝑓)) ∈ V |
9 | 5, 8 | fnmpoi 8058 | 1 ⊢ 𝑂 Fn ((𝐵 × 𝐵) × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 × cxp 5673 Fn wfn 6537 ‘cfv 6542 (class class class)co 7411 ∈ cmpo 7413 2nd c2nd 7976 Basecbs 17148 Hom chom 17212 compcco 17213 compfccomf 17615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-comf 17619 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |