MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  comffn Structured version   Visualization version   GIF version

Theorem comffn 16974
Description: The functionalized composition operation is a function. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
comfffn.o 𝑂 = (compf𝐶)
comfffn.b 𝐵 = (Base‘𝐶)
comffn.h 𝐻 = (Hom ‘𝐶)
comffn.x (𝜑𝑋𝐵)
comffn.y (𝜑𝑌𝐵)
comffn.z (𝜑𝑍𝐵)
Assertion
Ref Expression
comffn (𝜑 → (⟨𝑋, 𝑌𝑂𝑍) Fn ((𝑌𝐻𝑍) × (𝑋𝐻𝑌)))

Proof of Theorem comffn
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . . 3 (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝑓)) = (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝑓))
2 ovex 7188 . . 3 (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝑓) ∈ V
31, 2fnmpoi 7767 . 2 (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝑓)) Fn ((𝑌𝐻𝑍) × (𝑋𝐻𝑌))
4 comfffn.o . . . 4 𝑂 = (compf𝐶)
5 comfffn.b . . . 4 𝐵 = (Base‘𝐶)
6 comffn.h . . . 4 𝐻 = (Hom ‘𝐶)
7 eqid 2821 . . . 4 (comp‘𝐶) = (comp‘𝐶)
8 comffn.x . . . 4 (𝜑𝑋𝐵)
9 comffn.y . . . 4 (𝜑𝑌𝐵)
10 comffn.z . . . 4 (𝜑𝑍𝐵)
114, 5, 6, 7, 8, 9, 10comffval 16968 . . 3 (𝜑 → (⟨𝑋, 𝑌𝑂𝑍) = (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝑓)))
1211fneq1d 6445 . 2 (𝜑 → ((⟨𝑋, 𝑌𝑂𝑍) Fn ((𝑌𝐻𝑍) × (𝑋𝐻𝑌)) ↔ (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝑓)) Fn ((𝑌𝐻𝑍) × (𝑋𝐻𝑌))))
133, 12mpbiri 260 1 (𝜑 → (⟨𝑋, 𝑌𝑂𝑍) Fn ((𝑌𝐻𝑍) × (𝑋𝐻𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110  cop 4572   × cxp 5552   Fn wfn 6349  cfv 6354  (class class class)co 7155  cmpo 7157  Basecbs 16482  Hom chom 16575  compcco 16576  compfccomf 16937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-ov 7158  df-oprab 7159  df-mpo 7160  df-1st 7688  df-2nd 7689  df-comf 16941
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator