Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > comffn | Structured version Visualization version GIF version |
Description: The functionalized composition operation is a function. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
comfffn.o | ⊢ 𝑂 = (compf‘𝐶) |
comfffn.b | ⊢ 𝐵 = (Base‘𝐶) |
comffn.h | ⊢ 𝐻 = (Hom ‘𝐶) |
comffn.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
comffn.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
comffn.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
Ref | Expression |
---|---|
comffn | ⊢ (𝜑 → (〈𝑋, 𝑌〉𝑂𝑍) Fn ((𝑌𝐻𝑍) × (𝑋𝐻𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(〈𝑋, 𝑌〉(comp‘𝐶)𝑍)𝑓)) = (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(〈𝑋, 𝑌〉(comp‘𝐶)𝑍)𝑓)) | |
2 | ovex 7288 | . . 3 ⊢ (𝑔(〈𝑋, 𝑌〉(comp‘𝐶)𝑍)𝑓) ∈ V | |
3 | 1, 2 | fnmpoi 7883 | . 2 ⊢ (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(〈𝑋, 𝑌〉(comp‘𝐶)𝑍)𝑓)) Fn ((𝑌𝐻𝑍) × (𝑋𝐻𝑌)) |
4 | comfffn.o | . . . 4 ⊢ 𝑂 = (compf‘𝐶) | |
5 | comfffn.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
6 | comffn.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
7 | eqid 2738 | . . . 4 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
8 | comffn.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
9 | comffn.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
10 | comffn.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
11 | 4, 5, 6, 7, 8, 9, 10 | comffval 17325 | . . 3 ⊢ (𝜑 → (〈𝑋, 𝑌〉𝑂𝑍) = (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(〈𝑋, 𝑌〉(comp‘𝐶)𝑍)𝑓))) |
12 | 11 | fneq1d 6510 | . 2 ⊢ (𝜑 → ((〈𝑋, 𝑌〉𝑂𝑍) Fn ((𝑌𝐻𝑍) × (𝑋𝐻𝑌)) ↔ (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(〈𝑋, 𝑌〉(comp‘𝐶)𝑍)𝑓)) Fn ((𝑌𝐻𝑍) × (𝑋𝐻𝑌)))) |
13 | 3, 12 | mpbiri 257 | 1 ⊢ (𝜑 → (〈𝑋, 𝑌〉𝑂𝑍) Fn ((𝑌𝐻𝑍) × (𝑋𝐻𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 〈cop 4564 × cxp 5578 Fn wfn 6413 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 Basecbs 16840 Hom chom 16899 compcco 16900 compfccomf 17293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-comf 17297 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |