MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  comffn Structured version   Visualization version   GIF version

Theorem comffn 17653
Description: The functionalized composition operation is a function. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
comfffn.o 𝑂 = (compf𝐶)
comfffn.b 𝐵 = (Base‘𝐶)
comffn.h 𝐻 = (Hom ‘𝐶)
comffn.x (𝜑𝑋𝐵)
comffn.y (𝜑𝑌𝐵)
comffn.z (𝜑𝑍𝐵)
Assertion
Ref Expression
comffn (𝜑 → (⟨𝑋, 𝑌𝑂𝑍) Fn ((𝑌𝐻𝑍) × (𝑋𝐻𝑌)))

Proof of Theorem comffn
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . . 3 (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝑓)) = (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝑓))
2 ovex 7444 . . 3 (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝑓) ∈ V
31, 2fnmpoi 8058 . 2 (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝑓)) Fn ((𝑌𝐻𝑍) × (𝑋𝐻𝑌))
4 comfffn.o . . . 4 𝑂 = (compf𝐶)
5 comfffn.b . . . 4 𝐵 = (Base‘𝐶)
6 comffn.h . . . 4 𝐻 = (Hom ‘𝐶)
7 eqid 2732 . . . 4 (comp‘𝐶) = (comp‘𝐶)
8 comffn.x . . . 4 (𝜑𝑋𝐵)
9 comffn.y . . . 4 (𝜑𝑌𝐵)
10 comffn.z . . . 4 (𝜑𝑍𝐵)
114, 5, 6, 7, 8, 9, 10comffval 17647 . . 3 (𝜑 → (⟨𝑋, 𝑌𝑂𝑍) = (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝑓)))
1211fneq1d 6642 . 2 (𝜑 → ((⟨𝑋, 𝑌𝑂𝑍) Fn ((𝑌𝐻𝑍) × (𝑋𝐻𝑌)) ↔ (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝑓)) Fn ((𝑌𝐻𝑍) × (𝑋𝐻𝑌))))
133, 12mpbiri 257 1 (𝜑 → (⟨𝑋, 𝑌𝑂𝑍) Fn ((𝑌𝐻𝑍) × (𝑋𝐻𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  cop 4634   × cxp 5674   Fn wfn 6538  cfv 6543  (class class class)co 7411  cmpo 7413  Basecbs 17148  Hom chom 17212  compcco 17213  compfccomf 17615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-comf 17619
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator