![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > comffn | Structured version Visualization version GIF version |
Description: The functionalized composition operation is a function. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
comfffn.o | ⊢ 𝑂 = (compf‘𝐶) |
comfffn.b | ⊢ 𝐵 = (Base‘𝐶) |
comffn.h | ⊢ 𝐻 = (Hom ‘𝐶) |
comffn.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
comffn.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
comffn.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
Ref | Expression |
---|---|
comffn | ⊢ (𝜑 → (〈𝑋, 𝑌〉𝑂𝑍) Fn ((𝑌𝐻𝑍) × (𝑋𝐻𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2731 | . . 3 ⊢ (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(〈𝑋, 𝑌〉(comp‘𝐶)𝑍)𝑓)) = (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(〈𝑋, 𝑌〉(comp‘𝐶)𝑍)𝑓)) | |
2 | ovex 7445 | . . 3 ⊢ (𝑔(〈𝑋, 𝑌〉(comp‘𝐶)𝑍)𝑓) ∈ V | |
3 | 1, 2 | fnmpoi 8060 | . 2 ⊢ (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(〈𝑋, 𝑌〉(comp‘𝐶)𝑍)𝑓)) Fn ((𝑌𝐻𝑍) × (𝑋𝐻𝑌)) |
4 | comfffn.o | . . . 4 ⊢ 𝑂 = (compf‘𝐶) | |
5 | comfffn.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
6 | comffn.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
7 | eqid 2731 | . . . 4 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
8 | comffn.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
9 | comffn.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
10 | comffn.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
11 | 4, 5, 6, 7, 8, 9, 10 | comffval 17650 | . . 3 ⊢ (𝜑 → (〈𝑋, 𝑌〉𝑂𝑍) = (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(〈𝑋, 𝑌〉(comp‘𝐶)𝑍)𝑓))) |
12 | 11 | fneq1d 6642 | . 2 ⊢ (𝜑 → ((〈𝑋, 𝑌〉𝑂𝑍) Fn ((𝑌𝐻𝑍) × (𝑋𝐻𝑌)) ↔ (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(〈𝑋, 𝑌〉(comp‘𝐶)𝑍)𝑓)) Fn ((𝑌𝐻𝑍) × (𝑋𝐻𝑌)))) |
13 | 3, 12 | mpbiri 258 | 1 ⊢ (𝜑 → (〈𝑋, 𝑌〉𝑂𝑍) Fn ((𝑌𝐻𝑍) × (𝑋𝐻𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 〈cop 4634 × cxp 5674 Fn wfn 6538 ‘cfv 6543 (class class class)co 7412 ∈ cmpo 7414 Basecbs 17151 Hom chom 17215 compcco 17216 compfccomf 17618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-comf 17622 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |