MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  comffn Structured version   Visualization version   GIF version

Theorem comffn 17759
Description: The functionalized composition operation is a function. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
comfffn.o 𝑂 = (compf𝐶)
comfffn.b 𝐵 = (Base‘𝐶)
comffn.h 𝐻 = (Hom ‘𝐶)
comffn.x (𝜑𝑋𝐵)
comffn.y (𝜑𝑌𝐵)
comffn.z (𝜑𝑍𝐵)
Assertion
Ref Expression
comffn (𝜑 → (⟨𝑋, 𝑌𝑂𝑍) Fn ((𝑌𝐻𝑍) × (𝑋𝐻𝑌)))

Proof of Theorem comffn
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . 3 (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝑓)) = (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝑓))
2 ovex 7471 . . 3 (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝑓) ∈ V
31, 2fnmpoi 8103 . 2 (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝑓)) Fn ((𝑌𝐻𝑍) × (𝑋𝐻𝑌))
4 comfffn.o . . . 4 𝑂 = (compf𝐶)
5 comfffn.b . . . 4 𝐵 = (Base‘𝐶)
6 comffn.h . . . 4 𝐻 = (Hom ‘𝐶)
7 eqid 2737 . . . 4 (comp‘𝐶) = (comp‘𝐶)
8 comffn.x . . . 4 (𝜑𝑋𝐵)
9 comffn.y . . . 4 (𝜑𝑌𝐵)
10 comffn.z . . . 4 (𝜑𝑍𝐵)
114, 5, 6, 7, 8, 9, 10comffval 17753 . . 3 (𝜑 → (⟨𝑋, 𝑌𝑂𝑍) = (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝑓)))
1211fneq1d 6669 . 2 (𝜑 → ((⟨𝑋, 𝑌𝑂𝑍) Fn ((𝑌𝐻𝑍) × (𝑋𝐻𝑌)) ↔ (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)𝑓)) Fn ((𝑌𝐻𝑍) × (𝑋𝐻𝑌))))
133, 12mpbiri 258 1 (𝜑 → (⟨𝑋, 𝑌𝑂𝑍) Fn ((𝑌𝐻𝑍) × (𝑋𝐻𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cop 4640   × cxp 5691   Fn wfn 6564  cfv 6569  (class class class)co 7438  cmpo 7440  Basecbs 17254  Hom chom 17318  compcco 17319  compfccomf 17721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-ov 7441  df-oprab 7442  df-mpo 7443  df-1st 8022  df-2nd 8023  df-comf 17725
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator