Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > comffn | Structured version Visualization version GIF version |
Description: The functionalized composition operation is a function. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
comfffn.o | ⊢ 𝑂 = (compf‘𝐶) |
comfffn.b | ⊢ 𝐵 = (Base‘𝐶) |
comffn.h | ⊢ 𝐻 = (Hom ‘𝐶) |
comffn.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
comffn.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
comffn.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
Ref | Expression |
---|---|
comffn | ⊢ (𝜑 → (〈𝑋, 𝑌〉𝑂𝑍) Fn ((𝑌𝐻𝑍) × (𝑋𝐻𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(〈𝑋, 𝑌〉(comp‘𝐶)𝑍)𝑓)) = (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(〈𝑋, 𝑌〉(comp‘𝐶)𝑍)𝑓)) | |
2 | ovex 7308 | . . 3 ⊢ (𝑔(〈𝑋, 𝑌〉(comp‘𝐶)𝑍)𝑓) ∈ V | |
3 | 1, 2 | fnmpoi 7910 | . 2 ⊢ (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(〈𝑋, 𝑌〉(comp‘𝐶)𝑍)𝑓)) Fn ((𝑌𝐻𝑍) × (𝑋𝐻𝑌)) |
4 | comfffn.o | . . . 4 ⊢ 𝑂 = (compf‘𝐶) | |
5 | comfffn.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
6 | comffn.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
7 | eqid 2738 | . . . 4 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
8 | comffn.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
9 | comffn.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
10 | comffn.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
11 | 4, 5, 6, 7, 8, 9, 10 | comffval 17408 | . . 3 ⊢ (𝜑 → (〈𝑋, 𝑌〉𝑂𝑍) = (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(〈𝑋, 𝑌〉(comp‘𝐶)𝑍)𝑓))) |
12 | 11 | fneq1d 6526 | . 2 ⊢ (𝜑 → ((〈𝑋, 𝑌〉𝑂𝑍) Fn ((𝑌𝐻𝑍) × (𝑋𝐻𝑌)) ↔ (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(〈𝑋, 𝑌〉(comp‘𝐶)𝑍)𝑓)) Fn ((𝑌𝐻𝑍) × (𝑋𝐻𝑌)))) |
13 | 3, 12 | mpbiri 257 | 1 ⊢ (𝜑 → (〈𝑋, 𝑌〉𝑂𝑍) Fn ((𝑌𝐻𝑍) × (𝑋𝐻𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 〈cop 4567 × cxp 5587 Fn wfn 6428 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 Basecbs 16912 Hom chom 16973 compcco 16974 compfccomf 17376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-comf 17380 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |