MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  comfval2 Structured version   Visualization version   GIF version

Theorem comfval2 17717
Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
comfffval2.o 𝑂 = (compf𝐶)
comfffval2.b 𝐵 = (Base‘𝐶)
comfffval2.h 𝐻 = (Homf𝐶)
comfffval2.x · = (comp‘𝐶)
comffval2.x (𝜑𝑋𝐵)
comffval2.y (𝜑𝑌𝐵)
comffval2.z (𝜑𝑍𝐵)
comfval2.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
comfval2.g (𝜑𝐺 ∈ (𝑌𝐻𝑍))
Assertion
Ref Expression
comfval2 (𝜑 → (𝐺(⟨𝑋, 𝑌𝑂𝑍)𝐹) = (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))

Proof of Theorem comfval2
StepHypRef Expression
1 comfffval2.o . 2 𝑂 = (compf𝐶)
2 comfffval2.b . 2 𝐵 = (Base‘𝐶)
3 eqid 2734 . 2 (Hom ‘𝐶) = (Hom ‘𝐶)
4 comfffval2.x . 2 · = (comp‘𝐶)
5 comffval2.x . 2 (𝜑𝑋𝐵)
6 comffval2.y . 2 (𝜑𝑌𝐵)
7 comffval2.z . 2 (𝜑𝑍𝐵)
8 comfval2.f . . 3 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
9 comfffval2.h . . . 4 𝐻 = (Homf𝐶)
109, 2, 3, 5, 6homfval 17706 . . 3 (𝜑 → (𝑋𝐻𝑌) = (𝑋(Hom ‘𝐶)𝑌))
118, 10eleqtrd 2835 . 2 (𝜑𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
12 comfval2.g . . 3 (𝜑𝐺 ∈ (𝑌𝐻𝑍))
139, 2, 3, 6, 7homfval 17706 . . 3 (𝜑 → (𝑌𝐻𝑍) = (𝑌(Hom ‘𝐶)𝑍))
1412, 13eleqtrd 2835 . 2 (𝜑𝐺 ∈ (𝑌(Hom ‘𝐶)𝑍))
151, 2, 3, 4, 5, 6, 7, 11, 14comfval 17714 1 (𝜑 → (𝐺(⟨𝑋, 𝑌𝑂𝑍)𝐹) = (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  cop 4612  cfv 6541  (class class class)co 7413  Basecbs 17229  Hom chom 17284  compcco 17285  Homf chomf 17680  compfccomf 17681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7996  df-2nd 7997  df-homf 17684  df-comf 17685
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator