MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  comfval2 Structured version   Visualization version   GIF version

Theorem comfval2 17651
Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
comfffval2.o ๐‘‚ = (compfโ€˜๐ถ)
comfffval2.b ๐ต = (Baseโ€˜๐ถ)
comfffval2.h ๐ป = (Homf โ€˜๐ถ)
comfffval2.x ยท = (compโ€˜๐ถ)
comffval2.x (๐œ‘ โ†’ ๐‘‹ โˆˆ ๐ต)
comffval2.y (๐œ‘ โ†’ ๐‘Œ โˆˆ ๐ต)
comffval2.z (๐œ‘ โ†’ ๐‘ โˆˆ ๐ต)
comfval2.f (๐œ‘ โ†’ ๐น โˆˆ (๐‘‹๐ป๐‘Œ))
comfval2.g (๐œ‘ โ†’ ๐บ โˆˆ (๐‘Œ๐ป๐‘))
Assertion
Ref Expression
comfval2 (๐œ‘ โ†’ (๐บ(โŸจ๐‘‹, ๐‘ŒโŸฉ๐‘‚๐‘)๐น) = (๐บ(โŸจ๐‘‹, ๐‘ŒโŸฉ ยท ๐‘)๐น))

Proof of Theorem comfval2
StepHypRef Expression
1 comfffval2.o . 2 ๐‘‚ = (compfโ€˜๐ถ)
2 comfffval2.b . 2 ๐ต = (Baseโ€˜๐ถ)
3 eqid 2732 . 2 (Hom โ€˜๐ถ) = (Hom โ€˜๐ถ)
4 comfffval2.x . 2 ยท = (compโ€˜๐ถ)
5 comffval2.x . 2 (๐œ‘ โ†’ ๐‘‹ โˆˆ ๐ต)
6 comffval2.y . 2 (๐œ‘ โ†’ ๐‘Œ โˆˆ ๐ต)
7 comffval2.z . 2 (๐œ‘ โ†’ ๐‘ โˆˆ ๐ต)
8 comfval2.f . . 3 (๐œ‘ โ†’ ๐น โˆˆ (๐‘‹๐ป๐‘Œ))
9 comfffval2.h . . . 4 ๐ป = (Homf โ€˜๐ถ)
109, 2, 3, 5, 6homfval 17640 . . 3 (๐œ‘ โ†’ (๐‘‹๐ป๐‘Œ) = (๐‘‹(Hom โ€˜๐ถ)๐‘Œ))
118, 10eleqtrd 2835 . 2 (๐œ‘ โ†’ ๐น โˆˆ (๐‘‹(Hom โ€˜๐ถ)๐‘Œ))
12 comfval2.g . . 3 (๐œ‘ โ†’ ๐บ โˆˆ (๐‘Œ๐ป๐‘))
139, 2, 3, 6, 7homfval 17640 . . 3 (๐œ‘ โ†’ (๐‘Œ๐ป๐‘) = (๐‘Œ(Hom โ€˜๐ถ)๐‘))
1412, 13eleqtrd 2835 . 2 (๐œ‘ โ†’ ๐บ โˆˆ (๐‘Œ(Hom โ€˜๐ถ)๐‘))
151, 2, 3, 4, 5, 6, 7, 11, 14comfval 17648 1 (๐œ‘ โ†’ (๐บ(โŸจ๐‘‹, ๐‘ŒโŸฉ๐‘‚๐‘)๐น) = (๐บ(โŸจ๐‘‹, ๐‘ŒโŸฉ ยท ๐‘)๐น))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   = wceq 1541   โˆˆ wcel 2106  โŸจcop 4634  โ€˜cfv 6543  (class class class)co 7411  Basecbs 17148  Hom chom 17212  compcco 17213  Homf chomf 17614  compfccomf 17615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-homf 17618  df-comf 17619
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator