| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > comfval2 | Structured version Visualization version GIF version | ||
| Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| comfffval2.o | ⊢ 𝑂 = (compf‘𝐶) |
| comfffval2.b | ⊢ 𝐵 = (Base‘𝐶) |
| comfffval2.h | ⊢ 𝐻 = (Homf ‘𝐶) |
| comfffval2.x | ⊢ · = (comp‘𝐶) |
| comffval2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| comffval2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| comffval2.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| comfval2.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
| comfval2.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) |
| Ref | Expression |
|---|---|
| comfval2 | ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉𝑂𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | comfffval2.o | . 2 ⊢ 𝑂 = (compf‘𝐶) | |
| 2 | comfffval2.b | . 2 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | eqid 2729 | . 2 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 4 | comfffval2.x | . 2 ⊢ · = (comp‘𝐶) | |
| 5 | comffval2.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | comffval2.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 7 | comffval2.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 8 | comfval2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
| 9 | comfffval2.h | . . . 4 ⊢ 𝐻 = (Homf ‘𝐶) | |
| 10 | 9, 2, 3, 5, 6 | homfval 17598 | . . 3 ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑋(Hom ‘𝐶)𝑌)) |
| 11 | 8, 10 | eleqtrd 2830 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌)) |
| 12 | comfval2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) | |
| 13 | 9, 2, 3, 6, 7 | homfval 17598 | . . 3 ⊢ (𝜑 → (𝑌𝐻𝑍) = (𝑌(Hom ‘𝐶)𝑍)) |
| 14 | 12, 13 | eleqtrd 2830 | . 2 ⊢ (𝜑 → 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑍)) |
| 15 | 1, 2, 3, 4, 5, 6, 7, 11, 14 | comfval 17606 | 1 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉𝑂𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4583 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 Hom chom 17172 compcco 17173 Homf chomf 17572 compfccomf 17573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-homf 17576 df-comf 17577 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |