MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  comfval2 Structured version   Visualization version   GIF version

Theorem comfval2 17664
Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
comfffval2.o 𝑂 = (compf𝐶)
comfffval2.b 𝐵 = (Base‘𝐶)
comfffval2.h 𝐻 = (Homf𝐶)
comfffval2.x · = (comp‘𝐶)
comffval2.x (𝜑𝑋𝐵)
comffval2.y (𝜑𝑌𝐵)
comffval2.z (𝜑𝑍𝐵)
comfval2.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
comfval2.g (𝜑𝐺 ∈ (𝑌𝐻𝑍))
Assertion
Ref Expression
comfval2 (𝜑 → (𝐺(⟨𝑋, 𝑌𝑂𝑍)𝐹) = (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))

Proof of Theorem comfval2
StepHypRef Expression
1 comfffval2.o . 2 𝑂 = (compf𝐶)
2 comfffval2.b . 2 𝐵 = (Base‘𝐶)
3 eqid 2729 . 2 (Hom ‘𝐶) = (Hom ‘𝐶)
4 comfffval2.x . 2 · = (comp‘𝐶)
5 comffval2.x . 2 (𝜑𝑋𝐵)
6 comffval2.y . 2 (𝜑𝑌𝐵)
7 comffval2.z . 2 (𝜑𝑍𝐵)
8 comfval2.f . . 3 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
9 comfffval2.h . . . 4 𝐻 = (Homf𝐶)
109, 2, 3, 5, 6homfval 17653 . . 3 (𝜑 → (𝑋𝐻𝑌) = (𝑋(Hom ‘𝐶)𝑌))
118, 10eleqtrd 2830 . 2 (𝜑𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
12 comfval2.g . . 3 (𝜑𝐺 ∈ (𝑌𝐻𝑍))
139, 2, 3, 6, 7homfval 17653 . . 3 (𝜑 → (𝑌𝐻𝑍) = (𝑌(Hom ‘𝐶)𝑍))
1412, 13eleqtrd 2830 . 2 (𝜑𝐺 ∈ (𝑌(Hom ‘𝐶)𝑍))
151, 2, 3, 4, 5, 6, 7, 11, 14comfval 17661 1 (𝜑 → (𝐺(⟨𝑋, 𝑌𝑂𝑍)𝐹) = (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cop 4595  cfv 6511  (class class class)co 7387  Basecbs 17179  Hom chom 17231  compcco 17232  Homf chomf 17627  compfccomf 17628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-homf 17631  df-comf 17632
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator