![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > comfval2 | Structured version Visualization version GIF version |
Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
comfffval2.o | โข ๐ = (compfโ๐ถ) |
comfffval2.b | โข ๐ต = (Baseโ๐ถ) |
comfffval2.h | โข ๐ป = (Homf โ๐ถ) |
comfffval2.x | โข ยท = (compโ๐ถ) |
comffval2.x | โข (๐ โ ๐ โ ๐ต) |
comffval2.y | โข (๐ โ ๐ โ ๐ต) |
comffval2.z | โข (๐ โ ๐ โ ๐ต) |
comfval2.f | โข (๐ โ ๐น โ (๐๐ป๐)) |
comfval2.g | โข (๐ โ ๐บ โ (๐๐ป๐)) |
Ref | Expression |
---|---|
comfval2 | โข (๐ โ (๐บ(โจ๐, ๐โฉ๐๐)๐น) = (๐บ(โจ๐, ๐โฉ ยท ๐)๐น)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | comfffval2.o | . 2 โข ๐ = (compfโ๐ถ) | |
2 | comfffval2.b | . 2 โข ๐ต = (Baseโ๐ถ) | |
3 | eqid 2732 | . 2 โข (Hom โ๐ถ) = (Hom โ๐ถ) | |
4 | comfffval2.x | . 2 โข ยท = (compโ๐ถ) | |
5 | comffval2.x | . 2 โข (๐ โ ๐ โ ๐ต) | |
6 | comffval2.y | . 2 โข (๐ โ ๐ โ ๐ต) | |
7 | comffval2.z | . 2 โข (๐ โ ๐ โ ๐ต) | |
8 | comfval2.f | . . 3 โข (๐ โ ๐น โ (๐๐ป๐)) | |
9 | comfffval2.h | . . . 4 โข ๐ป = (Homf โ๐ถ) | |
10 | 9, 2, 3, 5, 6 | homfval 17640 | . . 3 โข (๐ โ (๐๐ป๐) = (๐(Hom โ๐ถ)๐)) |
11 | 8, 10 | eleqtrd 2835 | . 2 โข (๐ โ ๐น โ (๐(Hom โ๐ถ)๐)) |
12 | comfval2.g | . . 3 โข (๐ โ ๐บ โ (๐๐ป๐)) | |
13 | 9, 2, 3, 6, 7 | homfval 17640 | . . 3 โข (๐ โ (๐๐ป๐) = (๐(Hom โ๐ถ)๐)) |
14 | 12, 13 | eleqtrd 2835 | . 2 โข (๐ โ ๐บ โ (๐(Hom โ๐ถ)๐)) |
15 | 1, 2, 3, 4, 5, 6, 7, 11, 14 | comfval 17648 | 1 โข (๐ โ (๐บ(โจ๐, ๐โฉ๐๐)๐น) = (๐บ(โจ๐, ๐โฉ ยท ๐)๐น)) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1541 โ wcel 2106 โจcop 4634 โcfv 6543 (class class class)co 7411 Basecbs 17148 Hom chom 17212 compcco 17213 Homf chomf 17614 compfccomf 17615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-homf 17618 df-comf 17619 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |