MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  comfval2 Structured version   Visualization version   GIF version

Theorem comfval2 17645
Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
comfffval2.o 𝑂 = (compf𝐶)
comfffval2.b 𝐵 = (Base‘𝐶)
comfffval2.h 𝐻 = (Homf𝐶)
comfffval2.x · = (comp‘𝐶)
comffval2.x (𝜑𝑋𝐵)
comffval2.y (𝜑𝑌𝐵)
comffval2.z (𝜑𝑍𝐵)
comfval2.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
comfval2.g (𝜑𝐺 ∈ (𝑌𝐻𝑍))
Assertion
Ref Expression
comfval2 (𝜑 → (𝐺(⟨𝑋, 𝑌𝑂𝑍)𝐹) = (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))

Proof of Theorem comfval2
StepHypRef Expression
1 comfffval2.o . 2 𝑂 = (compf𝐶)
2 comfffval2.b . 2 𝐵 = (Base‘𝐶)
3 eqid 2724 . 2 (Hom ‘𝐶) = (Hom ‘𝐶)
4 comfffval2.x . 2 · = (comp‘𝐶)
5 comffval2.x . 2 (𝜑𝑋𝐵)
6 comffval2.y . 2 (𝜑𝑌𝐵)
7 comffval2.z . 2 (𝜑𝑍𝐵)
8 comfval2.f . . 3 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
9 comfffval2.h . . . 4 𝐻 = (Homf𝐶)
109, 2, 3, 5, 6homfval 17634 . . 3 (𝜑 → (𝑋𝐻𝑌) = (𝑋(Hom ‘𝐶)𝑌))
118, 10eleqtrd 2827 . 2 (𝜑𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
12 comfval2.g . . 3 (𝜑𝐺 ∈ (𝑌𝐻𝑍))
139, 2, 3, 6, 7homfval 17634 . . 3 (𝜑 → (𝑌𝐻𝑍) = (𝑌(Hom ‘𝐶)𝑍))
1412, 13eleqtrd 2827 . 2 (𝜑𝐺 ∈ (𝑌(Hom ‘𝐶)𝑍))
151, 2, 3, 4, 5, 6, 7, 11, 14comfval 17642 1 (𝜑 → (𝐺(⟨𝑋, 𝑌𝑂𝑍)𝐹) = (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  cop 4626  cfv 6533  (class class class)co 7401  Basecbs 17142  Hom chom 17206  compcco 17207  Homf chomf 17608  compfccomf 17609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-1st 7968  df-2nd 7969  df-homf 17612  df-comf 17613
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator