MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  comfval2 Structured version   Visualization version   GIF version

Theorem comfval2 17670
Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
comfffval2.o 𝑂 = (compf𝐶)
comfffval2.b 𝐵 = (Base‘𝐶)
comfffval2.h 𝐻 = (Homf𝐶)
comfffval2.x · = (comp‘𝐶)
comffval2.x (𝜑𝑋𝐵)
comffval2.y (𝜑𝑌𝐵)
comffval2.z (𝜑𝑍𝐵)
comfval2.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
comfval2.g (𝜑𝐺 ∈ (𝑌𝐻𝑍))
Assertion
Ref Expression
comfval2 (𝜑 → (𝐺(⟨𝑋, 𝑌𝑂𝑍)𝐹) = (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))

Proof of Theorem comfval2
StepHypRef Expression
1 comfffval2.o . 2 𝑂 = (compf𝐶)
2 comfffval2.b . 2 𝐵 = (Base‘𝐶)
3 eqid 2730 . 2 (Hom ‘𝐶) = (Hom ‘𝐶)
4 comfffval2.x . 2 · = (comp‘𝐶)
5 comffval2.x . 2 (𝜑𝑋𝐵)
6 comffval2.y . 2 (𝜑𝑌𝐵)
7 comffval2.z . 2 (𝜑𝑍𝐵)
8 comfval2.f . . 3 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
9 comfffval2.h . . . 4 𝐻 = (Homf𝐶)
109, 2, 3, 5, 6homfval 17659 . . 3 (𝜑 → (𝑋𝐻𝑌) = (𝑋(Hom ‘𝐶)𝑌))
118, 10eleqtrd 2831 . 2 (𝜑𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
12 comfval2.g . . 3 (𝜑𝐺 ∈ (𝑌𝐻𝑍))
139, 2, 3, 6, 7homfval 17659 . . 3 (𝜑 → (𝑌𝐻𝑍) = (𝑌(Hom ‘𝐶)𝑍))
1412, 13eleqtrd 2831 . 2 (𝜑𝐺 ∈ (𝑌(Hom ‘𝐶)𝑍))
151, 2, 3, 4, 5, 6, 7, 11, 14comfval 17667 1 (𝜑 → (𝐺(⟨𝑋, 𝑌𝑂𝑍)𝐹) = (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cop 4597  cfv 6513  (class class class)co 7389  Basecbs 17185  Hom chom 17237  compcco 17238  Homf chomf 17633  compfccomf 17634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-homf 17637  df-comf 17638
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator