Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > comffval | Structured version Visualization version GIF version |
Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
comfffval.o | ⊢ 𝑂 = (compf‘𝐶) |
comfffval.b | ⊢ 𝐵 = (Base‘𝐶) |
comfffval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
comfffval.x | ⊢ · = (comp‘𝐶) |
comffval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
comffval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
comffval.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
Ref | Expression |
---|---|
comffval | ⊢ (𝜑 → (〈𝑋, 𝑌〉𝑂𝑍) = (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | comfffval.o | . . . 4 ⊢ 𝑂 = (compf‘𝐶) | |
2 | comfffval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
3 | comfffval.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
4 | comfffval.x | . . . 4 ⊢ · = (comp‘𝐶) | |
5 | 1, 2, 3, 4 | comfffval 17324 | . . 3 ⊢ 𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑥)𝐻𝑧), 𝑓 ∈ (𝐻‘𝑥) ↦ (𝑔(𝑥 · 𝑧)𝑓))) |
6 | 5 | a1i 11 | . 2 ⊢ (𝜑 → 𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑥)𝐻𝑧), 𝑓 ∈ (𝐻‘𝑥) ↦ (𝑔(𝑥 · 𝑧)𝑓)))) |
7 | simprl 767 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → 𝑥 = 〈𝑋, 𝑌〉) | |
8 | 7 | fveq2d 6760 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (2nd ‘𝑥) = (2nd ‘〈𝑋, 𝑌〉)) |
9 | comffval.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
10 | comffval.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
11 | op2ndg 7817 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) | |
12 | 9, 10, 11 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) |
13 | 12 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) |
14 | 8, 13 | eqtrd 2778 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (2nd ‘𝑥) = 𝑌) |
15 | simprr 769 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → 𝑧 = 𝑍) | |
16 | 14, 15 | oveq12d 7273 | . . 3 ⊢ ((𝜑 ∧ (𝑥 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → ((2nd ‘𝑥)𝐻𝑧) = (𝑌𝐻𝑍)) |
17 | 7 | fveq2d 6760 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (𝐻‘𝑥) = (𝐻‘〈𝑋, 𝑌〉)) |
18 | df-ov 7258 | . . . 4 ⊢ (𝑋𝐻𝑌) = (𝐻‘〈𝑋, 𝑌〉) | |
19 | 17, 18 | eqtr4di 2797 | . . 3 ⊢ ((𝜑 ∧ (𝑥 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (𝐻‘𝑥) = (𝑋𝐻𝑌)) |
20 | 7, 15 | oveq12d 7273 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (𝑥 · 𝑧) = (〈𝑋, 𝑌〉 · 𝑍)) |
21 | 20 | oveqd 7272 | . . 3 ⊢ ((𝜑 ∧ (𝑥 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (𝑔(𝑥 · 𝑧)𝑓) = (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓)) |
22 | 16, 19, 21 | mpoeq123dv 7328 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (𝑔 ∈ ((2nd ‘𝑥)𝐻𝑧), 𝑓 ∈ (𝐻‘𝑥) ↦ (𝑔(𝑥 · 𝑧)𝑓)) = (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓))) |
23 | 9, 10 | opelxpd 5618 | . 2 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
24 | comffval.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
25 | ovex 7288 | . . . 4 ⊢ (𝑌𝐻𝑍) ∈ V | |
26 | ovex 7288 | . . . 4 ⊢ (𝑋𝐻𝑌) ∈ V | |
27 | 25, 26 | mpoex 7893 | . . 3 ⊢ (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓)) ∈ V |
28 | 27 | a1i 11 | . 2 ⊢ (𝜑 → (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓)) ∈ V) |
29 | 6, 22, 23, 24, 28 | ovmpod 7403 | 1 ⊢ (𝜑 → (〈𝑋, 𝑌〉𝑂𝑍) = (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 〈cop 4564 × cxp 5578 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 2nd c2nd 7803 Basecbs 16840 Hom chom 16899 compcco 16900 compfccomf 17293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-comf 17297 |
This theorem is referenced by: comfval 17326 comffval2 17328 comffn 17331 |
Copyright terms: Public domain | W3C validator |