MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  comffval Structured version   Visualization version   GIF version

Theorem comffval 16744
Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
comfffval.o 𝑂 = (compf𝐶)
comfffval.b 𝐵 = (Base‘𝐶)
comfffval.h 𝐻 = (Hom ‘𝐶)
comfffval.x · = (comp‘𝐶)
comffval.x (𝜑𝑋𝐵)
comffval.y (𝜑𝑌𝐵)
comffval.z (𝜑𝑍𝐵)
Assertion
Ref Expression
comffval (𝜑 → (⟨𝑋, 𝑌𝑂𝑍) = (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(⟨𝑋, 𝑌· 𝑍)𝑓)))
Distinct variable groups:   𝑓,𝑔,𝐶   𝜑,𝑓,𝑔   · ,𝑓,𝑔   𝑓,𝑋,𝑔   𝑓,𝑌,𝑔   𝑓,𝑍,𝑔   𝑓,𝐻,𝑔
Allowed substitution hints:   𝐵(𝑓,𝑔)   𝑂(𝑓,𝑔)

Proof of Theorem comffval
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 comfffval.o . . . 4 𝑂 = (compf𝐶)
2 comfffval.b . . . 4 𝐵 = (Base‘𝐶)
3 comfffval.h . . . 4 𝐻 = (Hom ‘𝐶)
4 comfffval.x . . . 4 · = (comp‘𝐶)
51, 2, 3, 4comfffval 16743 . . 3 𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐻𝑧), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑧)𝑓)))
65a1i 11 . 2 (𝜑𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐻𝑧), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑧)𝑓))))
7 simprl 761 . . . . . 6 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → 𝑥 = ⟨𝑋, 𝑌⟩)
87fveq2d 6450 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd𝑥) = (2nd ‘⟨𝑋, 𝑌⟩))
9 comffval.x . . . . . . 7 (𝜑𝑋𝐵)
10 comffval.y . . . . . . 7 (𝜑𝑌𝐵)
11 op2ndg 7458 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
129, 10, 11syl2anc 579 . . . . . 6 (𝜑 → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
1312adantr 474 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
148, 13eqtrd 2813 . . . 4 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd𝑥) = 𝑌)
15 simprr 763 . . . 4 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → 𝑧 = 𝑍)
1614, 15oveq12d 6940 . . 3 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → ((2nd𝑥)𝐻𝑧) = (𝑌𝐻𝑍))
177fveq2d 6450 . . . 4 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (𝐻𝑥) = (𝐻‘⟨𝑋, 𝑌⟩))
18 df-ov 6925 . . . 4 (𝑋𝐻𝑌) = (𝐻‘⟨𝑋, 𝑌⟩)
1917, 18syl6eqr 2831 . . 3 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (𝐻𝑥) = (𝑋𝐻𝑌))
207, 15oveq12d 6940 . . . 4 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (𝑥 · 𝑧) = (⟨𝑋, 𝑌· 𝑍))
2120oveqd 6939 . . 3 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (𝑔(𝑥 · 𝑧)𝑓) = (𝑔(⟨𝑋, 𝑌· 𝑍)𝑓))
2216, 19, 21mpt2eq123dv 6994 . 2 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (𝑔 ∈ ((2nd𝑥)𝐻𝑧), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑧)𝑓)) = (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(⟨𝑋, 𝑌· 𝑍)𝑓)))
239, 10opelxpd 5393 . 2 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
24 comffval.z . 2 (𝜑𝑍𝐵)
25 ovex 6954 . . . 4 (𝑌𝐻𝑍) ∈ V
26 ovex 6954 . . . 4 (𝑋𝐻𝑌) ∈ V
2725, 26mpt2ex 7527 . . 3 (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(⟨𝑋, 𝑌· 𝑍)𝑓)) ∈ V
2827a1i 11 . 2 (𝜑 → (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(⟨𝑋, 𝑌· 𝑍)𝑓)) ∈ V)
296, 22, 23, 24, 28ovmpt2d 7065 1 (𝜑 → (⟨𝑋, 𝑌𝑂𝑍) = (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(⟨𝑋, 𝑌· 𝑍)𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2106  Vcvv 3397  cop 4403   × cxp 5353  cfv 6135  (class class class)co 6922  cmpt2 6924  2nd c2nd 7444  Basecbs 16255  Hom chom 16349  compcco 16350  compfccomf 16713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-1st 7445  df-2nd 7446  df-comf 16717
This theorem is referenced by:  comfval  16745  comffval2  16747  comffn  16750
  Copyright terms: Public domain W3C validator