![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > comffval | Structured version Visualization version GIF version |
Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
comfffval.o | ⊢ 𝑂 = (compf‘𝐶) |
comfffval.b | ⊢ 𝐵 = (Base‘𝐶) |
comfffval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
comfffval.x | ⊢ · = (comp‘𝐶) |
comffval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
comffval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
comffval.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
Ref | Expression |
---|---|
comffval | ⊢ (𝜑 → (〈𝑋, 𝑌〉𝑂𝑍) = (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | comfffval.o | . . . 4 ⊢ 𝑂 = (compf‘𝐶) | |
2 | comfffval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
3 | comfffval.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
4 | comfffval.x | . . . 4 ⊢ · = (comp‘𝐶) | |
5 | 1, 2, 3, 4 | comfffval 16743 | . . 3 ⊢ 𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑥)𝐻𝑧), 𝑓 ∈ (𝐻‘𝑥) ↦ (𝑔(𝑥 · 𝑧)𝑓))) |
6 | 5 | a1i 11 | . 2 ⊢ (𝜑 → 𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑥)𝐻𝑧), 𝑓 ∈ (𝐻‘𝑥) ↦ (𝑔(𝑥 · 𝑧)𝑓)))) |
7 | simprl 761 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → 𝑥 = 〈𝑋, 𝑌〉) | |
8 | 7 | fveq2d 6450 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (2nd ‘𝑥) = (2nd ‘〈𝑋, 𝑌〉)) |
9 | comffval.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
10 | comffval.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
11 | op2ndg 7458 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) | |
12 | 9, 10, 11 | syl2anc 579 | . . . . . 6 ⊢ (𝜑 → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) |
13 | 12 | adantr 474 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) |
14 | 8, 13 | eqtrd 2813 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (2nd ‘𝑥) = 𝑌) |
15 | simprr 763 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → 𝑧 = 𝑍) | |
16 | 14, 15 | oveq12d 6940 | . . 3 ⊢ ((𝜑 ∧ (𝑥 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → ((2nd ‘𝑥)𝐻𝑧) = (𝑌𝐻𝑍)) |
17 | 7 | fveq2d 6450 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (𝐻‘𝑥) = (𝐻‘〈𝑋, 𝑌〉)) |
18 | df-ov 6925 | . . . 4 ⊢ (𝑋𝐻𝑌) = (𝐻‘〈𝑋, 𝑌〉) | |
19 | 17, 18 | syl6eqr 2831 | . . 3 ⊢ ((𝜑 ∧ (𝑥 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (𝐻‘𝑥) = (𝑋𝐻𝑌)) |
20 | 7, 15 | oveq12d 6940 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (𝑥 · 𝑧) = (〈𝑋, 𝑌〉 · 𝑍)) |
21 | 20 | oveqd 6939 | . . 3 ⊢ ((𝜑 ∧ (𝑥 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (𝑔(𝑥 · 𝑧)𝑓) = (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓)) |
22 | 16, 19, 21 | mpt2eq123dv 6994 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (𝑔 ∈ ((2nd ‘𝑥)𝐻𝑧), 𝑓 ∈ (𝐻‘𝑥) ↦ (𝑔(𝑥 · 𝑧)𝑓)) = (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓))) |
23 | 9, 10 | opelxpd 5393 | . 2 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
24 | comffval.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
25 | ovex 6954 | . . . 4 ⊢ (𝑌𝐻𝑍) ∈ V | |
26 | ovex 6954 | . . . 4 ⊢ (𝑋𝐻𝑌) ∈ V | |
27 | 25, 26 | mpt2ex 7527 | . . 3 ⊢ (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓)) ∈ V |
28 | 27 | a1i 11 | . 2 ⊢ (𝜑 → (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓)) ∈ V) |
29 | 6, 22, 23, 24, 28 | ovmpt2d 7065 | 1 ⊢ (𝜑 → (〈𝑋, 𝑌〉𝑂𝑍) = (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2106 Vcvv 3397 〈cop 4403 × cxp 5353 ‘cfv 6135 (class class class)co 6922 ↦ cmpt2 6924 2nd c2nd 7444 Basecbs 16255 Hom chom 16349 compcco 16350 compfccomf 16713 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-1st 7445 df-2nd 7446 df-comf 16717 |
This theorem is referenced by: comfval 16745 comffval2 16747 comffn 16750 |
Copyright terms: Public domain | W3C validator |