MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  comffval Structured version   Visualization version   GIF version

Theorem comffval 16969
Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
comfffval.o 𝑂 = (compf𝐶)
comfffval.b 𝐵 = (Base‘𝐶)
comfffval.h 𝐻 = (Hom ‘𝐶)
comfffval.x · = (comp‘𝐶)
comffval.x (𝜑𝑋𝐵)
comffval.y (𝜑𝑌𝐵)
comffval.z (𝜑𝑍𝐵)
Assertion
Ref Expression
comffval (𝜑 → (⟨𝑋, 𝑌𝑂𝑍) = (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(⟨𝑋, 𝑌· 𝑍)𝑓)))
Distinct variable groups:   𝑓,𝑔,𝐶   𝜑,𝑓,𝑔   · ,𝑓,𝑔   𝑓,𝑋,𝑔   𝑓,𝑌,𝑔   𝑓,𝑍,𝑔   𝑓,𝐻,𝑔
Allowed substitution hints:   𝐵(𝑓,𝑔)   𝑂(𝑓,𝑔)

Proof of Theorem comffval
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 comfffval.o . . . 4 𝑂 = (compf𝐶)
2 comfffval.b . . . 4 𝐵 = (Base‘𝐶)
3 comfffval.h . . . 4 𝐻 = (Hom ‘𝐶)
4 comfffval.x . . . 4 · = (comp‘𝐶)
51, 2, 3, 4comfffval 16968 . . 3 𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐻𝑧), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑧)𝑓)))
65a1i 11 . 2 (𝜑𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐻𝑧), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑧)𝑓))))
7 simprl 769 . . . . . 6 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → 𝑥 = ⟨𝑋, 𝑌⟩)
87fveq2d 6674 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd𝑥) = (2nd ‘⟨𝑋, 𝑌⟩))
9 comffval.x . . . . . . 7 (𝜑𝑋𝐵)
10 comffval.y . . . . . . 7 (𝜑𝑌𝐵)
11 op2ndg 7702 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
129, 10, 11syl2anc 586 . . . . . 6 (𝜑 → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
1312adantr 483 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
148, 13eqtrd 2856 . . . 4 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd𝑥) = 𝑌)
15 simprr 771 . . . 4 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → 𝑧 = 𝑍)
1614, 15oveq12d 7174 . . 3 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → ((2nd𝑥)𝐻𝑧) = (𝑌𝐻𝑍))
177fveq2d 6674 . . . 4 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (𝐻𝑥) = (𝐻‘⟨𝑋, 𝑌⟩))
18 df-ov 7159 . . . 4 (𝑋𝐻𝑌) = (𝐻‘⟨𝑋, 𝑌⟩)
1917, 18syl6eqr 2874 . . 3 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (𝐻𝑥) = (𝑋𝐻𝑌))
207, 15oveq12d 7174 . . . 4 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (𝑥 · 𝑧) = (⟨𝑋, 𝑌· 𝑍))
2120oveqd 7173 . . 3 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (𝑔(𝑥 · 𝑧)𝑓) = (𝑔(⟨𝑋, 𝑌· 𝑍)𝑓))
2216, 19, 21mpoeq123dv 7229 . 2 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (𝑔 ∈ ((2nd𝑥)𝐻𝑧), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑧)𝑓)) = (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(⟨𝑋, 𝑌· 𝑍)𝑓)))
239, 10opelxpd 5593 . 2 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
24 comffval.z . 2 (𝜑𝑍𝐵)
25 ovex 7189 . . . 4 (𝑌𝐻𝑍) ∈ V
26 ovex 7189 . . . 4 (𝑋𝐻𝑌) ∈ V
2725, 26mpoex 7777 . . 3 (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(⟨𝑋, 𝑌· 𝑍)𝑓)) ∈ V
2827a1i 11 . 2 (𝜑 → (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(⟨𝑋, 𝑌· 𝑍)𝑓)) ∈ V)
296, 22, 23, 24, 28ovmpod 7302 1 (𝜑 → (⟨𝑋, 𝑌𝑂𝑍) = (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(⟨𝑋, 𝑌· 𝑍)𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  Vcvv 3494  cop 4573   × cxp 5553  cfv 6355  (class class class)co 7156  cmpo 7158  2nd c2nd 7688  Basecbs 16483  Hom chom 16576  compcco 16577  compfccomf 16938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-comf 16942
This theorem is referenced by:  comfval  16970  comffval2  16972  comffn  16975
  Copyright terms: Public domain W3C validator