MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  comffval Structured version   Visualization version   GIF version

Theorem comffval 17643
Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
comfffval.o ๐‘‚ = (compfโ€˜๐ถ)
comfffval.b ๐ต = (Baseโ€˜๐ถ)
comfffval.h ๐ป = (Hom โ€˜๐ถ)
comfffval.x ยท = (compโ€˜๐ถ)
comffval.x (๐œ‘ โ†’ ๐‘‹ โˆˆ ๐ต)
comffval.y (๐œ‘ โ†’ ๐‘Œ โˆˆ ๐ต)
comffval.z (๐œ‘ โ†’ ๐‘ โˆˆ ๐ต)
Assertion
Ref Expression
comffval (๐œ‘ โ†’ (โŸจ๐‘‹, ๐‘ŒโŸฉ๐‘‚๐‘) = (๐‘” โˆˆ (๐‘Œ๐ป๐‘), ๐‘“ โˆˆ (๐‘‹๐ป๐‘Œ) โ†ฆ (๐‘”(โŸจ๐‘‹, ๐‘ŒโŸฉ ยท ๐‘)๐‘“)))
Distinct variable groups:   ๐‘“,๐‘”,๐ถ   ๐œ‘,๐‘“,๐‘”   ยท ,๐‘“,๐‘”   ๐‘“,๐‘‹,๐‘”   ๐‘“,๐‘Œ,๐‘”   ๐‘“,๐‘,๐‘”   ๐‘“,๐ป,๐‘”
Allowed substitution hints:   ๐ต(๐‘“,๐‘”)   ๐‘‚(๐‘“,๐‘”)

Proof of Theorem comffval
Dummy variables ๐‘ฅ ๐‘ง are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 comfffval.o . . . 4 ๐‘‚ = (compfโ€˜๐ถ)
2 comfffval.b . . . 4 ๐ต = (Baseโ€˜๐ถ)
3 comfffval.h . . . 4 ๐ป = (Hom โ€˜๐ถ)
4 comfffval.x . . . 4 ยท = (compโ€˜๐ถ)
51, 2, 3, 4comfffval 17642 . . 3 ๐‘‚ = (๐‘ฅ โˆˆ (๐ต ร— ๐ต), ๐‘ง โˆˆ ๐ต โ†ฆ (๐‘” โˆˆ ((2nd โ€˜๐‘ฅ)๐ป๐‘ง), ๐‘“ โˆˆ (๐ปโ€˜๐‘ฅ) โ†ฆ (๐‘”(๐‘ฅ ยท ๐‘ง)๐‘“)))
65a1i 11 . 2 (๐œ‘ โ†’ ๐‘‚ = (๐‘ฅ โˆˆ (๐ต ร— ๐ต), ๐‘ง โˆˆ ๐ต โ†ฆ (๐‘” โˆˆ ((2nd โ€˜๐‘ฅ)๐ป๐‘ง), ๐‘“ โˆˆ (๐ปโ€˜๐‘ฅ) โ†ฆ (๐‘”(๐‘ฅ ยท ๐‘ง)๐‘“))))
7 simprl 770 . . . . . 6 ((๐œ‘ โˆง (๐‘ฅ = โŸจ๐‘‹, ๐‘ŒโŸฉ โˆง ๐‘ง = ๐‘)) โ†’ ๐‘ฅ = โŸจ๐‘‹, ๐‘ŒโŸฉ)
87fveq2d 6896 . . . . 5 ((๐œ‘ โˆง (๐‘ฅ = โŸจ๐‘‹, ๐‘ŒโŸฉ โˆง ๐‘ง = ๐‘)) โ†’ (2nd โ€˜๐‘ฅ) = (2nd โ€˜โŸจ๐‘‹, ๐‘ŒโŸฉ))
9 comffval.x . . . . . . 7 (๐œ‘ โ†’ ๐‘‹ โˆˆ ๐ต)
10 comffval.y . . . . . . 7 (๐œ‘ โ†’ ๐‘Œ โˆˆ ๐ต)
11 op2ndg 7988 . . . . . . 7 ((๐‘‹ โˆˆ ๐ต โˆง ๐‘Œ โˆˆ ๐ต) โ†’ (2nd โ€˜โŸจ๐‘‹, ๐‘ŒโŸฉ) = ๐‘Œ)
129, 10, 11syl2anc 585 . . . . . 6 (๐œ‘ โ†’ (2nd โ€˜โŸจ๐‘‹, ๐‘ŒโŸฉ) = ๐‘Œ)
1312adantr 482 . . . . 5 ((๐œ‘ โˆง (๐‘ฅ = โŸจ๐‘‹, ๐‘ŒโŸฉ โˆง ๐‘ง = ๐‘)) โ†’ (2nd โ€˜โŸจ๐‘‹, ๐‘ŒโŸฉ) = ๐‘Œ)
148, 13eqtrd 2773 . . . 4 ((๐œ‘ โˆง (๐‘ฅ = โŸจ๐‘‹, ๐‘ŒโŸฉ โˆง ๐‘ง = ๐‘)) โ†’ (2nd โ€˜๐‘ฅ) = ๐‘Œ)
15 simprr 772 . . . 4 ((๐œ‘ โˆง (๐‘ฅ = โŸจ๐‘‹, ๐‘ŒโŸฉ โˆง ๐‘ง = ๐‘)) โ†’ ๐‘ง = ๐‘)
1614, 15oveq12d 7427 . . 3 ((๐œ‘ โˆง (๐‘ฅ = โŸจ๐‘‹, ๐‘ŒโŸฉ โˆง ๐‘ง = ๐‘)) โ†’ ((2nd โ€˜๐‘ฅ)๐ป๐‘ง) = (๐‘Œ๐ป๐‘))
177fveq2d 6896 . . . 4 ((๐œ‘ โˆง (๐‘ฅ = โŸจ๐‘‹, ๐‘ŒโŸฉ โˆง ๐‘ง = ๐‘)) โ†’ (๐ปโ€˜๐‘ฅ) = (๐ปโ€˜โŸจ๐‘‹, ๐‘ŒโŸฉ))
18 df-ov 7412 . . . 4 (๐‘‹๐ป๐‘Œ) = (๐ปโ€˜โŸจ๐‘‹, ๐‘ŒโŸฉ)
1917, 18eqtr4di 2791 . . 3 ((๐œ‘ โˆง (๐‘ฅ = โŸจ๐‘‹, ๐‘ŒโŸฉ โˆง ๐‘ง = ๐‘)) โ†’ (๐ปโ€˜๐‘ฅ) = (๐‘‹๐ป๐‘Œ))
207, 15oveq12d 7427 . . . 4 ((๐œ‘ โˆง (๐‘ฅ = โŸจ๐‘‹, ๐‘ŒโŸฉ โˆง ๐‘ง = ๐‘)) โ†’ (๐‘ฅ ยท ๐‘ง) = (โŸจ๐‘‹, ๐‘ŒโŸฉ ยท ๐‘))
2120oveqd 7426 . . 3 ((๐œ‘ โˆง (๐‘ฅ = โŸจ๐‘‹, ๐‘ŒโŸฉ โˆง ๐‘ง = ๐‘)) โ†’ (๐‘”(๐‘ฅ ยท ๐‘ง)๐‘“) = (๐‘”(โŸจ๐‘‹, ๐‘ŒโŸฉ ยท ๐‘)๐‘“))
2216, 19, 21mpoeq123dv 7484 . 2 ((๐œ‘ โˆง (๐‘ฅ = โŸจ๐‘‹, ๐‘ŒโŸฉ โˆง ๐‘ง = ๐‘)) โ†’ (๐‘” โˆˆ ((2nd โ€˜๐‘ฅ)๐ป๐‘ง), ๐‘“ โˆˆ (๐ปโ€˜๐‘ฅ) โ†ฆ (๐‘”(๐‘ฅ ยท ๐‘ง)๐‘“)) = (๐‘” โˆˆ (๐‘Œ๐ป๐‘), ๐‘“ โˆˆ (๐‘‹๐ป๐‘Œ) โ†ฆ (๐‘”(โŸจ๐‘‹, ๐‘ŒโŸฉ ยท ๐‘)๐‘“)))
239, 10opelxpd 5716 . 2 (๐œ‘ โ†’ โŸจ๐‘‹, ๐‘ŒโŸฉ โˆˆ (๐ต ร— ๐ต))
24 comffval.z . 2 (๐œ‘ โ†’ ๐‘ โˆˆ ๐ต)
25 ovex 7442 . . . 4 (๐‘Œ๐ป๐‘) โˆˆ V
26 ovex 7442 . . . 4 (๐‘‹๐ป๐‘Œ) โˆˆ V
2725, 26mpoex 8066 . . 3 (๐‘” โˆˆ (๐‘Œ๐ป๐‘), ๐‘“ โˆˆ (๐‘‹๐ป๐‘Œ) โ†ฆ (๐‘”(โŸจ๐‘‹, ๐‘ŒโŸฉ ยท ๐‘)๐‘“)) โˆˆ V
2827a1i 11 . 2 (๐œ‘ โ†’ (๐‘” โˆˆ (๐‘Œ๐ป๐‘), ๐‘“ โˆˆ (๐‘‹๐ป๐‘Œ) โ†ฆ (๐‘”(โŸจ๐‘‹, ๐‘ŒโŸฉ ยท ๐‘)๐‘“)) โˆˆ V)
296, 22, 23, 24, 28ovmpod 7560 1 (๐œ‘ โ†’ (โŸจ๐‘‹, ๐‘ŒโŸฉ๐‘‚๐‘) = (๐‘” โˆˆ (๐‘Œ๐ป๐‘), ๐‘“ โˆˆ (๐‘‹๐ป๐‘Œ) โ†ฆ (๐‘”(โŸจ๐‘‹, ๐‘ŒโŸฉ ยท ๐‘)๐‘“)))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 397   = wceq 1542   โˆˆ wcel 2107  Vcvv 3475  โŸจcop 4635   ร— cxp 5675  โ€˜cfv 6544  (class class class)co 7409   โˆˆ cmpo 7411  2nd c2nd 7974  Basecbs 17144  Hom chom 17208  compcco 17209  compfccomf 17611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-comf 17615
This theorem is referenced by:  comfval  17644  comffval2  17646  comffn  17649
  Copyright terms: Public domain W3C validator