MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  comffval Structured version   Visualization version   GIF version

Theorem comffval 17716
Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
comfffval.o 𝑂 = (compf𝐶)
comfffval.b 𝐵 = (Base‘𝐶)
comfffval.h 𝐻 = (Hom ‘𝐶)
comfffval.x · = (comp‘𝐶)
comffval.x (𝜑𝑋𝐵)
comffval.y (𝜑𝑌𝐵)
comffval.z (𝜑𝑍𝐵)
Assertion
Ref Expression
comffval (𝜑 → (⟨𝑋, 𝑌𝑂𝑍) = (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(⟨𝑋, 𝑌· 𝑍)𝑓)))
Distinct variable groups:   𝑓,𝑔,𝐶   𝜑,𝑓,𝑔   · ,𝑓,𝑔   𝑓,𝑋,𝑔   𝑓,𝑌,𝑔   𝑓,𝑍,𝑔   𝑓,𝐻,𝑔
Allowed substitution hints:   𝐵(𝑓,𝑔)   𝑂(𝑓,𝑔)

Proof of Theorem comffval
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 comfffval.o . . . 4 𝑂 = (compf𝐶)
2 comfffval.b . . . 4 𝐵 = (Base‘𝐶)
3 comfffval.h . . . 4 𝐻 = (Hom ‘𝐶)
4 comfffval.x . . . 4 · = (comp‘𝐶)
51, 2, 3, 4comfffval 17715 . . 3 𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐻𝑧), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑧)𝑓)))
65a1i 11 . 2 (𝜑𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐻𝑧), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑧)𝑓))))
7 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → 𝑥 = ⟨𝑋, 𝑌⟩)
87fveq2d 6885 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd𝑥) = (2nd ‘⟨𝑋, 𝑌⟩))
9 comffval.x . . . . . . 7 (𝜑𝑋𝐵)
10 comffval.y . . . . . . 7 (𝜑𝑌𝐵)
11 op2ndg 8006 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
129, 10, 11syl2anc 584 . . . . . 6 (𝜑 → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
1312adantr 480 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
148, 13eqtrd 2771 . . . 4 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd𝑥) = 𝑌)
15 simprr 772 . . . 4 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → 𝑧 = 𝑍)
1614, 15oveq12d 7428 . . 3 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → ((2nd𝑥)𝐻𝑧) = (𝑌𝐻𝑍))
177fveq2d 6885 . . . 4 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (𝐻𝑥) = (𝐻‘⟨𝑋, 𝑌⟩))
18 df-ov 7413 . . . 4 (𝑋𝐻𝑌) = (𝐻‘⟨𝑋, 𝑌⟩)
1917, 18eqtr4di 2789 . . 3 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (𝐻𝑥) = (𝑋𝐻𝑌))
207, 15oveq12d 7428 . . . 4 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (𝑥 · 𝑧) = (⟨𝑋, 𝑌· 𝑍))
2120oveqd 7427 . . 3 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (𝑔(𝑥 · 𝑧)𝑓) = (𝑔(⟨𝑋, 𝑌· 𝑍)𝑓))
2216, 19, 21mpoeq123dv 7487 . 2 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (𝑔 ∈ ((2nd𝑥)𝐻𝑧), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑧)𝑓)) = (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(⟨𝑋, 𝑌· 𝑍)𝑓)))
239, 10opelxpd 5698 . 2 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
24 comffval.z . 2 (𝜑𝑍𝐵)
25 ovex 7443 . . . 4 (𝑌𝐻𝑍) ∈ V
26 ovex 7443 . . . 4 (𝑋𝐻𝑌) ∈ V
2725, 26mpoex 8083 . . 3 (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(⟨𝑋, 𝑌· 𝑍)𝑓)) ∈ V
2827a1i 11 . 2 (𝜑 → (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(⟨𝑋, 𝑌· 𝑍)𝑓)) ∈ V)
296, 22, 23, 24, 28ovmpod 7564 1 (𝜑 → (⟨𝑋, 𝑌𝑂𝑍) = (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(⟨𝑋, 𝑌· 𝑍)𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3464  cop 4612   × cxp 5657  cfv 6536  (class class class)co 7410  cmpo 7412  2nd c2nd 7992  Basecbs 17233  Hom chom 17287  compcco 17288  compfccomf 17684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-comf 17688
This theorem is referenced by:  comfval  17717  comffval2  17719  comffn  17722
  Copyright terms: Public domain W3C validator