| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > comfval | Structured version Visualization version GIF version | ||
| Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| comfffval.o | ⊢ 𝑂 = (compf‘𝐶) |
| comfffval.b | ⊢ 𝐵 = (Base‘𝐶) |
| comfffval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| comfffval.x | ⊢ · = (comp‘𝐶) |
| comffval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| comffval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| comffval.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| comfval.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
| comfval.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) |
| Ref | Expression |
|---|---|
| comfval | ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉𝑂𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | comfffval.o | . . 3 ⊢ 𝑂 = (compf‘𝐶) | |
| 2 | comfffval.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | comfffval.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 4 | comfffval.x | . . 3 ⊢ · = (comp‘𝐶) | |
| 5 | comffval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | comffval.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 7 | comffval.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | comffval 17666 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑌〉𝑂𝑍) = (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓))) |
| 9 | oveq12 7398 | . . 3 ⊢ ((𝑔 = 𝐺 ∧ 𝑓 = 𝐹) → (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓) = (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹)) | |
| 10 | 9 | adantl 481 | . 2 ⊢ ((𝜑 ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) → (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓) = (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹)) |
| 11 | comfval.g | . 2 ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) | |
| 12 | comfval.f | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
| 13 | ovexd 7424 | . 2 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) ∈ V) | |
| 14 | 8, 10, 11, 12, 13 | ovmpod 7543 | 1 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉𝑂𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 〈cop 4597 ‘cfv 6513 (class class class)co 7389 Basecbs 17185 Hom chom 17237 compcco 17238 compfccomf 17634 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-1st 7970 df-2nd 7971 df-comf 17638 |
| This theorem is referenced by: comfval2 17670 comfeqval 17675 |
| Copyright terms: Public domain | W3C validator |