Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > comfval | Structured version Visualization version GIF version |
Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
comfffval.o | ⊢ 𝑂 = (compf‘𝐶) |
comfffval.b | ⊢ 𝐵 = (Base‘𝐶) |
comfffval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
comfffval.x | ⊢ · = (comp‘𝐶) |
comffval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
comffval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
comffval.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
comfval.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
comfval.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) |
Ref | Expression |
---|---|
comfval | ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉𝑂𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | comfffval.o | . . 3 ⊢ 𝑂 = (compf‘𝐶) | |
2 | comfffval.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
3 | comfffval.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
4 | comfffval.x | . . 3 ⊢ · = (comp‘𝐶) | |
5 | comffval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | comffval.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
7 | comffval.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
8 | 1, 2, 3, 4, 5, 6, 7 | comffval 17075 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑌〉𝑂𝑍) = (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓))) |
9 | oveq12 7181 | . . 3 ⊢ ((𝑔 = 𝐺 ∧ 𝑓 = 𝐹) → (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓) = (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹)) | |
10 | 9 | adantl 485 | . 2 ⊢ ((𝜑 ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) → (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓) = (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹)) |
11 | comfval.g | . 2 ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) | |
12 | comfval.f | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
13 | ovexd 7207 | . 2 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) ∈ V) | |
14 | 8, 10, 11, 12, 13 | ovmpod 7319 | 1 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉𝑂𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 Vcvv 3398 〈cop 4522 ‘cfv 6339 (class class class)co 7172 Basecbs 16588 Hom chom 16681 compcco 16682 compfccomf 17043 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7481 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-ov 7175 df-oprab 7176 df-mpo 7177 df-1st 7716 df-2nd 7717 df-comf 17047 |
This theorem is referenced by: comfval2 17079 comfeqval 17084 |
Copyright terms: Public domain | W3C validator |