![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > comfval | Structured version Visualization version GIF version |
Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
comfffval.o | โข ๐ = (compfโ๐ถ) |
comfffval.b | โข ๐ต = (Baseโ๐ถ) |
comfffval.h | โข ๐ป = (Hom โ๐ถ) |
comfffval.x | โข ยท = (compโ๐ถ) |
comffval.x | โข (๐ โ ๐ โ ๐ต) |
comffval.y | โข (๐ โ ๐ โ ๐ต) |
comffval.z | โข (๐ โ ๐ โ ๐ต) |
comfval.f | โข (๐ โ ๐น โ (๐๐ป๐)) |
comfval.g | โข (๐ โ ๐บ โ (๐๐ป๐)) |
Ref | Expression |
---|---|
comfval | โข (๐ โ (๐บ(โจ๐, ๐โฉ๐๐)๐น) = (๐บ(โจ๐, ๐โฉ ยท ๐)๐น)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | comfffval.o | . . 3 โข ๐ = (compfโ๐ถ) | |
2 | comfffval.b | . . 3 โข ๐ต = (Baseโ๐ถ) | |
3 | comfffval.h | . . 3 โข ๐ป = (Hom โ๐ถ) | |
4 | comfffval.x | . . 3 โข ยท = (compโ๐ถ) | |
5 | comffval.x | . . 3 โข (๐ โ ๐ โ ๐ต) | |
6 | comffval.y | . . 3 โข (๐ โ ๐ โ ๐ต) | |
7 | comffval.z | . . 3 โข (๐ โ ๐ โ ๐ต) | |
8 | 1, 2, 3, 4, 5, 6, 7 | comffval 17643 | . 2 โข (๐ โ (โจ๐, ๐โฉ๐๐) = (๐ โ (๐๐ป๐), ๐ โ (๐๐ป๐) โฆ (๐(โจ๐, ๐โฉ ยท ๐)๐))) |
9 | oveq12 7418 | . . 3 โข ((๐ = ๐บ โง ๐ = ๐น) โ (๐(โจ๐, ๐โฉ ยท ๐)๐) = (๐บ(โจ๐, ๐โฉ ยท ๐)๐น)) | |
10 | 9 | adantl 483 | . 2 โข ((๐ โง (๐ = ๐บ โง ๐ = ๐น)) โ (๐(โจ๐, ๐โฉ ยท ๐)๐) = (๐บ(โจ๐, ๐โฉ ยท ๐)๐น)) |
11 | comfval.g | . 2 โข (๐ โ ๐บ โ (๐๐ป๐)) | |
12 | comfval.f | . 2 โข (๐ โ ๐น โ (๐๐ป๐)) | |
13 | ovexd 7444 | . 2 โข (๐ โ (๐บ(โจ๐, ๐โฉ ยท ๐)๐น) โ V) | |
14 | 8, 10, 11, 12, 13 | ovmpod 7560 | 1 โข (๐ โ (๐บ(โจ๐, ๐โฉ๐๐)๐น) = (๐บ(โจ๐, ๐โฉ ยท ๐)๐น)) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 397 = wceq 1542 โ wcel 2107 Vcvv 3475 โจcop 4635 โcfv 6544 (class class class)co 7409 Basecbs 17144 Hom chom 17208 compcco 17209 compfccomf 17611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-comf 17615 |
This theorem is referenced by: comfval2 17647 comfeqval 17652 |
Copyright terms: Public domain | W3C validator |