MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  comfval Structured version   Visualization version   GIF version

Theorem comfval 17667
Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
comfffval.o 𝑂 = (compf𝐶)
comfffval.b 𝐵 = (Base‘𝐶)
comfffval.h 𝐻 = (Hom ‘𝐶)
comfffval.x · = (comp‘𝐶)
comffval.x (𝜑𝑋𝐵)
comffval.y (𝜑𝑌𝐵)
comffval.z (𝜑𝑍𝐵)
comfval.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
comfval.g (𝜑𝐺 ∈ (𝑌𝐻𝑍))
Assertion
Ref Expression
comfval (𝜑 → (𝐺(⟨𝑋, 𝑌𝑂𝑍)𝐹) = (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))

Proof of Theorem comfval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 comfffval.o . . 3 𝑂 = (compf𝐶)
2 comfffval.b . . 3 𝐵 = (Base‘𝐶)
3 comfffval.h . . 3 𝐻 = (Hom ‘𝐶)
4 comfffval.x . . 3 · = (comp‘𝐶)
5 comffval.x . . 3 (𝜑𝑋𝐵)
6 comffval.y . . 3 (𝜑𝑌𝐵)
7 comffval.z . . 3 (𝜑𝑍𝐵)
81, 2, 3, 4, 5, 6, 7comffval 17666 . 2 (𝜑 → (⟨𝑋, 𝑌𝑂𝑍) = (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(⟨𝑋, 𝑌· 𝑍)𝑓)))
9 oveq12 7398 . . 3 ((𝑔 = 𝐺𝑓 = 𝐹) → (𝑔(⟨𝑋, 𝑌· 𝑍)𝑓) = (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))
109adantl 481 . 2 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (𝑔(⟨𝑋, 𝑌· 𝑍)𝑓) = (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))
11 comfval.g . 2 (𝜑𝐺 ∈ (𝑌𝐻𝑍))
12 comfval.f . 2 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
13 ovexd 7424 . 2 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) ∈ V)
148, 10, 11, 12, 13ovmpod 7543 1 (𝜑 → (𝐺(⟨𝑋, 𝑌𝑂𝑍)𝐹) = (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  cop 4597  cfv 6513  (class class class)co 7389  Basecbs 17185  Hom chom 17237  compcco 17238  compfccomf 17634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-comf 17638
This theorem is referenced by:  comfval2  17670  comfeqval  17675
  Copyright terms: Public domain W3C validator