![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > comfval | Structured version Visualization version GIF version |
Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
comfffval.o | โข ๐ = (compfโ๐ถ) |
comfffval.b | โข ๐ต = (Baseโ๐ถ) |
comfffval.h | โข ๐ป = (Hom โ๐ถ) |
comfffval.x | โข ยท = (compโ๐ถ) |
comffval.x | โข (๐ โ ๐ โ ๐ต) |
comffval.y | โข (๐ โ ๐ โ ๐ต) |
comffval.z | โข (๐ โ ๐ โ ๐ต) |
comfval.f | โข (๐ โ ๐น โ (๐๐ป๐)) |
comfval.g | โข (๐ โ ๐บ โ (๐๐ป๐)) |
Ref | Expression |
---|---|
comfval | โข (๐ โ (๐บ(โจ๐, ๐โฉ๐๐)๐น) = (๐บ(โจ๐, ๐โฉ ยท ๐)๐น)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | comfffval.o | . . 3 โข ๐ = (compfโ๐ถ) | |
2 | comfffval.b | . . 3 โข ๐ต = (Baseโ๐ถ) | |
3 | comfffval.h | . . 3 โข ๐ป = (Hom โ๐ถ) | |
4 | comfffval.x | . . 3 โข ยท = (compโ๐ถ) | |
5 | comffval.x | . . 3 โข (๐ โ ๐ โ ๐ต) | |
6 | comffval.y | . . 3 โข (๐ โ ๐ โ ๐ต) | |
7 | comffval.z | . . 3 โข (๐ โ ๐ โ ๐ต) | |
8 | 1, 2, 3, 4, 5, 6, 7 | comffval 17649 | . 2 โข (๐ โ (โจ๐, ๐โฉ๐๐) = (๐ โ (๐๐ป๐), ๐ โ (๐๐ป๐) โฆ (๐(โจ๐, ๐โฉ ยท ๐)๐))) |
9 | oveq12 7413 | . . 3 โข ((๐ = ๐บ โง ๐ = ๐น) โ (๐(โจ๐, ๐โฉ ยท ๐)๐) = (๐บ(โจ๐, ๐โฉ ยท ๐)๐น)) | |
10 | 9 | adantl 481 | . 2 โข ((๐ โง (๐ = ๐บ โง ๐ = ๐น)) โ (๐(โจ๐, ๐โฉ ยท ๐)๐) = (๐บ(โจ๐, ๐โฉ ยท ๐)๐น)) |
11 | comfval.g | . 2 โข (๐ โ ๐บ โ (๐๐ป๐)) | |
12 | comfval.f | . 2 โข (๐ โ ๐น โ (๐๐ป๐)) | |
13 | ovexd 7439 | . 2 โข (๐ โ (๐บ(โจ๐, ๐โฉ ยท ๐)๐น) โ V) | |
14 | 8, 10, 11, 12, 13 | ovmpod 7555 | 1 โข (๐ โ (๐บ(โจ๐, ๐โฉ๐๐)๐น) = (๐บ(โจ๐, ๐โฉ ยท ๐)๐น)) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 395 = wceq 1533 โ wcel 2098 Vcvv 3468 โจcop 4629 โcfv 6536 (class class class)co 7404 Basecbs 17150 Hom chom 17214 compcco 17215 compfccomf 17617 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7407 df-oprab 7408 df-mpo 7409 df-1st 7971 df-2nd 7972 df-comf 17621 |
This theorem is referenced by: comfval2 17653 comfeqval 17658 |
Copyright terms: Public domain | W3C validator |