MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  comfval Structured version   Visualization version   GIF version

Theorem comfval 17326
Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
comfffval.o 𝑂 = (compf𝐶)
comfffval.b 𝐵 = (Base‘𝐶)
comfffval.h 𝐻 = (Hom ‘𝐶)
comfffval.x · = (comp‘𝐶)
comffval.x (𝜑𝑋𝐵)
comffval.y (𝜑𝑌𝐵)
comffval.z (𝜑𝑍𝐵)
comfval.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
comfval.g (𝜑𝐺 ∈ (𝑌𝐻𝑍))
Assertion
Ref Expression
comfval (𝜑 → (𝐺(⟨𝑋, 𝑌𝑂𝑍)𝐹) = (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))

Proof of Theorem comfval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 comfffval.o . . 3 𝑂 = (compf𝐶)
2 comfffval.b . . 3 𝐵 = (Base‘𝐶)
3 comfffval.h . . 3 𝐻 = (Hom ‘𝐶)
4 comfffval.x . . 3 · = (comp‘𝐶)
5 comffval.x . . 3 (𝜑𝑋𝐵)
6 comffval.y . . 3 (𝜑𝑌𝐵)
7 comffval.z . . 3 (𝜑𝑍𝐵)
81, 2, 3, 4, 5, 6, 7comffval 17325 . 2 (𝜑 → (⟨𝑋, 𝑌𝑂𝑍) = (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(⟨𝑋, 𝑌· 𝑍)𝑓)))
9 oveq12 7264 . . 3 ((𝑔 = 𝐺𝑓 = 𝐹) → (𝑔(⟨𝑋, 𝑌· 𝑍)𝑓) = (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))
109adantl 481 . 2 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (𝑔(⟨𝑋, 𝑌· 𝑍)𝑓) = (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))
11 comfval.g . 2 (𝜑𝐺 ∈ (𝑌𝐻𝑍))
12 comfval.f . 2 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
13 ovexd 7290 . 2 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) ∈ V)
148, 10, 11, 12, 13ovmpod 7403 1 (𝜑 → (𝐺(⟨𝑋, 𝑌𝑂𝑍)𝐹) = (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cop 4564  cfv 6418  (class class class)co 7255  Basecbs 16840  Hom chom 16899  compcco 16900  compfccomf 17293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-comf 17297
This theorem is referenced by:  comfval2  17329  comfeqval  17334
  Copyright terms: Public domain W3C validator