MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  comfffval2 Structured version   Visualization version   GIF version

Theorem comfffval2 16963
Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
comfffval2.o 𝑂 = (compf𝐶)
comfffval2.b 𝐵 = (Base‘𝐶)
comfffval2.h 𝐻 = (Homf𝐶)
comfffval2.x · = (comp‘𝐶)
Assertion
Ref Expression
comfffval2 𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐻𝑦), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓)))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦,𝐵   𝐶,𝑓,𝑔,𝑥,𝑦   · ,𝑓,𝑔,𝑥
Allowed substitution hints:   · (𝑦)   𝐻(𝑥,𝑦,𝑓,𝑔)   𝑂(𝑥,𝑦,𝑓,𝑔)

Proof of Theorem comfffval2
StepHypRef Expression
1 comfffval2.o . . 3 𝑂 = (compf𝐶)
2 comfffval2.b . . 3 𝐵 = (Base‘𝐶)
3 eqid 2819 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
4 comfffval2.x . . 3 · = (comp‘𝐶)
51, 2, 3, 4comfffval 16960 . 2 𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)𝑦), 𝑓 ∈ ((Hom ‘𝐶)‘𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓)))
6 comfffval2.h . . . . 5 𝐻 = (Homf𝐶)
7 xp2nd 7714 . . . . . 6 (𝑥 ∈ (𝐵 × 𝐵) → (2nd𝑥) ∈ 𝐵)
87adantr 483 . . . . 5 ((𝑥 ∈ (𝐵 × 𝐵) ∧ 𝑦𝐵) → (2nd𝑥) ∈ 𝐵)
9 simpr 487 . . . . 5 ((𝑥 ∈ (𝐵 × 𝐵) ∧ 𝑦𝐵) → 𝑦𝐵)
106, 2, 3, 8, 9homfval 16954 . . . 4 ((𝑥 ∈ (𝐵 × 𝐵) ∧ 𝑦𝐵) → ((2nd𝑥)𝐻𝑦) = ((2nd𝑥)(Hom ‘𝐶)𝑦))
11 xp1st 7713 . . . . . . . 8 (𝑥 ∈ (𝐵 × 𝐵) → (1st𝑥) ∈ 𝐵)
1211adantr 483 . . . . . . 7 ((𝑥 ∈ (𝐵 × 𝐵) ∧ 𝑦𝐵) → (1st𝑥) ∈ 𝐵)
136, 2, 3, 12, 8homfval 16954 . . . . . 6 ((𝑥 ∈ (𝐵 × 𝐵) ∧ 𝑦𝐵) → ((1st𝑥)𝐻(2nd𝑥)) = ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)))
14 df-ov 7151 . . . . . 6 ((1st𝑥)𝐻(2nd𝑥)) = (𝐻‘⟨(1st𝑥), (2nd𝑥)⟩)
15 df-ov 7151 . . . . . 6 ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)) = ((Hom ‘𝐶)‘⟨(1st𝑥), (2nd𝑥)⟩)
1613, 14, 153eqtr3g 2877 . . . . 5 ((𝑥 ∈ (𝐵 × 𝐵) ∧ 𝑦𝐵) → (𝐻‘⟨(1st𝑥), (2nd𝑥)⟩) = ((Hom ‘𝐶)‘⟨(1st𝑥), (2nd𝑥)⟩))
17 1st2nd2 7720 . . . . . . 7 (𝑥 ∈ (𝐵 × 𝐵) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
1817adantr 483 . . . . . 6 ((𝑥 ∈ (𝐵 × 𝐵) ∧ 𝑦𝐵) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
1918fveq2d 6667 . . . . 5 ((𝑥 ∈ (𝐵 × 𝐵) ∧ 𝑦𝐵) → (𝐻𝑥) = (𝐻‘⟨(1st𝑥), (2nd𝑥)⟩))
2018fveq2d 6667 . . . . 5 ((𝑥 ∈ (𝐵 × 𝐵) ∧ 𝑦𝐵) → ((Hom ‘𝐶)‘𝑥) = ((Hom ‘𝐶)‘⟨(1st𝑥), (2nd𝑥)⟩))
2116, 19, 203eqtr4d 2864 . . . 4 ((𝑥 ∈ (𝐵 × 𝐵) ∧ 𝑦𝐵) → (𝐻𝑥) = ((Hom ‘𝐶)‘𝑥))
22 eqidd 2820 . . . 4 ((𝑥 ∈ (𝐵 × 𝐵) ∧ 𝑦𝐵) → (𝑔(𝑥 · 𝑦)𝑓) = (𝑔(𝑥 · 𝑦)𝑓))
2310, 21, 22mpoeq123dv 7221 . . 3 ((𝑥 ∈ (𝐵 × 𝐵) ∧ 𝑦𝐵) → (𝑔 ∈ ((2nd𝑥)𝐻𝑦), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓)) = (𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)𝑦), 𝑓 ∈ ((Hom ‘𝐶)‘𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓)))
2423mpoeq3ia 7224 . 2 (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐻𝑦), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓))) = (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)𝑦), 𝑓 ∈ ((Hom ‘𝐶)‘𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓)))
255, 24eqtr4i 2845 1 𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐻𝑦), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wa 398   = wceq 1531  wcel 2108  cop 4565   × cxp 5546  cfv 6348  (class class class)co 7148  cmpo 7150  1st c1st 7679  2nd c2nd 7680  Basecbs 16475  Hom chom 16568  compcco 16569  Homf chomf 16929  compfccomf 16930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7151  df-oprab 7152  df-mpo 7153  df-1st 7681  df-2nd 7682  df-homf 16933  df-comf 16934
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator