MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  comfffval2 Structured version   Visualization version   GIF version

Theorem comfffval2 17761
Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
comfffval2.o 𝑂 = (compf𝐶)
comfffval2.b 𝐵 = (Base‘𝐶)
comfffval2.h 𝐻 = (Homf𝐶)
comfffval2.x · = (comp‘𝐶)
Assertion
Ref Expression
comfffval2 𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐻𝑦), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓)))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦,𝐵   𝐶,𝑓,𝑔,𝑥,𝑦   · ,𝑓,𝑔,𝑥
Allowed substitution hints:   · (𝑦)   𝐻(𝑥,𝑦,𝑓,𝑔)   𝑂(𝑥,𝑦,𝑓,𝑔)

Proof of Theorem comfffval2
StepHypRef Expression
1 comfffval2.o . . 3 𝑂 = (compf𝐶)
2 comfffval2.b . . 3 𝐵 = (Base‘𝐶)
3 eqid 2740 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
4 comfffval2.x . . 3 · = (comp‘𝐶)
51, 2, 3, 4comfffval 17758 . 2 𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)𝑦), 𝑓 ∈ ((Hom ‘𝐶)‘𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓)))
6 comfffval2.h . . . . 5 𝐻 = (Homf𝐶)
7 xp2nd 8065 . . . . . 6 (𝑥 ∈ (𝐵 × 𝐵) → (2nd𝑥) ∈ 𝐵)
87adantr 480 . . . . 5 ((𝑥 ∈ (𝐵 × 𝐵) ∧ 𝑦𝐵) → (2nd𝑥) ∈ 𝐵)
9 simpr 484 . . . . 5 ((𝑥 ∈ (𝐵 × 𝐵) ∧ 𝑦𝐵) → 𝑦𝐵)
106, 2, 3, 8, 9homfval 17752 . . . 4 ((𝑥 ∈ (𝐵 × 𝐵) ∧ 𝑦𝐵) → ((2nd𝑥)𝐻𝑦) = ((2nd𝑥)(Hom ‘𝐶)𝑦))
11 xp1st 8064 . . . . . . . 8 (𝑥 ∈ (𝐵 × 𝐵) → (1st𝑥) ∈ 𝐵)
1211adantr 480 . . . . . . 7 ((𝑥 ∈ (𝐵 × 𝐵) ∧ 𝑦𝐵) → (1st𝑥) ∈ 𝐵)
136, 2, 3, 12, 8homfval 17752 . . . . . 6 ((𝑥 ∈ (𝐵 × 𝐵) ∧ 𝑦𝐵) → ((1st𝑥)𝐻(2nd𝑥)) = ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)))
14 df-ov 7453 . . . . . 6 ((1st𝑥)𝐻(2nd𝑥)) = (𝐻‘⟨(1st𝑥), (2nd𝑥)⟩)
15 df-ov 7453 . . . . . 6 ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)) = ((Hom ‘𝐶)‘⟨(1st𝑥), (2nd𝑥)⟩)
1613, 14, 153eqtr3g 2803 . . . . 5 ((𝑥 ∈ (𝐵 × 𝐵) ∧ 𝑦𝐵) → (𝐻‘⟨(1st𝑥), (2nd𝑥)⟩) = ((Hom ‘𝐶)‘⟨(1st𝑥), (2nd𝑥)⟩))
17 1st2nd2 8071 . . . . . . 7 (𝑥 ∈ (𝐵 × 𝐵) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
1817adantr 480 . . . . . 6 ((𝑥 ∈ (𝐵 × 𝐵) ∧ 𝑦𝐵) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
1918fveq2d 6926 . . . . 5 ((𝑥 ∈ (𝐵 × 𝐵) ∧ 𝑦𝐵) → (𝐻𝑥) = (𝐻‘⟨(1st𝑥), (2nd𝑥)⟩))
2018fveq2d 6926 . . . . 5 ((𝑥 ∈ (𝐵 × 𝐵) ∧ 𝑦𝐵) → ((Hom ‘𝐶)‘𝑥) = ((Hom ‘𝐶)‘⟨(1st𝑥), (2nd𝑥)⟩))
2116, 19, 203eqtr4d 2790 . . . 4 ((𝑥 ∈ (𝐵 × 𝐵) ∧ 𝑦𝐵) → (𝐻𝑥) = ((Hom ‘𝐶)‘𝑥))
22 eqidd 2741 . . . 4 ((𝑥 ∈ (𝐵 × 𝐵) ∧ 𝑦𝐵) → (𝑔(𝑥 · 𝑦)𝑓) = (𝑔(𝑥 · 𝑦)𝑓))
2310, 21, 22mpoeq123dv 7527 . . 3 ((𝑥 ∈ (𝐵 × 𝐵) ∧ 𝑦𝐵) → (𝑔 ∈ ((2nd𝑥)𝐻𝑦), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓)) = (𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)𝑦), 𝑓 ∈ ((Hom ‘𝐶)‘𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓)))
2423mpoeq3ia 7530 . 2 (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐻𝑦), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓))) = (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)𝑦), 𝑓 ∈ ((Hom ‘𝐶)‘𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓)))
255, 24eqtr4i 2771 1 𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐻𝑦), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wcel 2108  cop 4654   × cxp 5698  cfv 6575  (class class class)co 7450  cmpo 7452  1st c1st 8030  2nd c2nd 8031  Basecbs 17260  Hom chom 17324  compcco 17325  Homf chomf 17726  compfccomf 17727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-ov 7453  df-oprab 7454  df-mpo 7455  df-1st 8032  df-2nd 8033  df-homf 17730  df-comf 17731
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator