Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > comfeqval | Structured version Visualization version GIF version |
Description: Equality of two compositions. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
comfeqval.b | ⊢ 𝐵 = (Base‘𝐶) |
comfeqval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
comfeqval.1 | ⊢ · = (comp‘𝐶) |
comfeqval.2 | ⊢ ∙ = (comp‘𝐷) |
comfeqval.3 | ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) |
comfeqval.4 | ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) |
comfeqval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
comfeqval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
comfeqval.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
comfeqval.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
comfeqval.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) |
Ref | Expression |
---|---|
comfeqval | ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉 ∙ 𝑍)𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | comfeqval.4 | . . . 4 ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) | |
2 | 1 | oveqd 7272 | . . 3 ⊢ (𝜑 → (〈𝑋, 𝑌〉(compf‘𝐶)𝑍) = (〈𝑋, 𝑌〉(compf‘𝐷)𝑍)) |
3 | 2 | oveqd 7272 | . 2 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉(compf‘𝐶)𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉(compf‘𝐷)𝑍)𝐹)) |
4 | eqid 2738 | . . 3 ⊢ (compf‘𝐶) = (compf‘𝐶) | |
5 | comfeqval.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
6 | comfeqval.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
7 | comfeqval.1 | . . 3 ⊢ · = (comp‘𝐶) | |
8 | comfeqval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
9 | comfeqval.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
10 | comfeqval.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
11 | comfeqval.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
12 | comfeqval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) | |
13 | 4, 5, 6, 7, 8, 9, 10, 11, 12 | comfval 17326 | . 2 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉(compf‘𝐶)𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹)) |
14 | eqid 2738 | . . 3 ⊢ (compf‘𝐷) = (compf‘𝐷) | |
15 | eqid 2738 | . . 3 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
16 | eqid 2738 | . . 3 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
17 | comfeqval.2 | . . 3 ⊢ ∙ = (comp‘𝐷) | |
18 | comfeqval.3 | . . . . . 6 ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) | |
19 | 18 | homfeqbas 17322 | . . . . 5 ⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) |
20 | 5, 19 | eqtrid 2790 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐷)) |
21 | 8, 20 | eleqtrd 2841 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐷)) |
22 | 9, 20 | eleqtrd 2841 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐷)) |
23 | 10, 20 | eleqtrd 2841 | . . 3 ⊢ (𝜑 → 𝑍 ∈ (Base‘𝐷)) |
24 | 5, 6, 16, 18, 8, 9 | homfeqval 17323 | . . . 4 ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑋(Hom ‘𝐷)𝑌)) |
25 | 11, 24 | eleqtrd 2841 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋(Hom ‘𝐷)𝑌)) |
26 | 5, 6, 16, 18, 9, 10 | homfeqval 17323 | . . . 4 ⊢ (𝜑 → (𝑌𝐻𝑍) = (𝑌(Hom ‘𝐷)𝑍)) |
27 | 12, 26 | eleqtrd 2841 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝑌(Hom ‘𝐷)𝑍)) |
28 | 14, 15, 16, 17, 21, 22, 23, 25, 27 | comfval 17326 | . 2 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉(compf‘𝐷)𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉 ∙ 𝑍)𝐹)) |
29 | 3, 13, 28 | 3eqtr3d 2786 | 1 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉 ∙ 𝑍)𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 〈cop 4564 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 Hom chom 16899 compcco 16900 Homf chomf 17292 compfccomf 17293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-homf 17296 df-comf 17297 |
This theorem is referenced by: catpropd 17335 cidpropd 17336 oppccomfpropd 17355 monpropd 17366 funcpropd 17532 natpropd 17610 fucpropd 17611 xpcpropd 17842 hofpropd 17901 |
Copyright terms: Public domain | W3C validator |