MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  comfeqval Structured version   Visualization version   GIF version

Theorem comfeqval 16575
Description: Equality of two compositions. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
comfeqval.b 𝐵 = (Base‘𝐶)
comfeqval.h 𝐻 = (Hom ‘𝐶)
comfeqval.1 · = (comp‘𝐶)
comfeqval.2 = (comp‘𝐷)
comfeqval.3 (𝜑 → (Homf𝐶) = (Homf𝐷))
comfeqval.4 (𝜑 → (compf𝐶) = (compf𝐷))
comfeqval.x (𝜑𝑋𝐵)
comfeqval.y (𝜑𝑌𝐵)
comfeqval.z (𝜑𝑍𝐵)
comfeqval.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
comfeqval.g (𝜑𝐺 ∈ (𝑌𝐻𝑍))
Assertion
Ref Expression
comfeqval (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺(⟨𝑋, 𝑌 𝑍)𝐹))

Proof of Theorem comfeqval
StepHypRef Expression
1 comfeqval.4 . . . 4 (𝜑 → (compf𝐶) = (compf𝐷))
21oveqd 6810 . . 3 (𝜑 → (⟨𝑋, 𝑌⟩(compf𝐶)𝑍) = (⟨𝑋, 𝑌⟩(compf𝐷)𝑍))
32oveqd 6810 . 2 (𝜑 → (𝐺(⟨𝑋, 𝑌⟩(compf𝐶)𝑍)𝐹) = (𝐺(⟨𝑋, 𝑌⟩(compf𝐷)𝑍)𝐹))
4 eqid 2771 . . 3 (compf𝐶) = (compf𝐶)
5 comfeqval.b . . 3 𝐵 = (Base‘𝐶)
6 comfeqval.h . . 3 𝐻 = (Hom ‘𝐶)
7 comfeqval.1 . . 3 · = (comp‘𝐶)
8 comfeqval.x . . 3 (𝜑𝑋𝐵)
9 comfeqval.y . . 3 (𝜑𝑌𝐵)
10 comfeqval.z . . 3 (𝜑𝑍𝐵)
11 comfeqval.f . . 3 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
12 comfeqval.g . . 3 (𝜑𝐺 ∈ (𝑌𝐻𝑍))
134, 5, 6, 7, 8, 9, 10, 11, 12comfval 16567 . 2 (𝜑 → (𝐺(⟨𝑋, 𝑌⟩(compf𝐶)𝑍)𝐹) = (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))
14 eqid 2771 . . 3 (compf𝐷) = (compf𝐷)
15 eqid 2771 . . 3 (Base‘𝐷) = (Base‘𝐷)
16 eqid 2771 . . 3 (Hom ‘𝐷) = (Hom ‘𝐷)
17 comfeqval.2 . . 3 = (comp‘𝐷)
18 comfeqval.3 . . . . . 6 (𝜑 → (Homf𝐶) = (Homf𝐷))
1918homfeqbas 16563 . . . . 5 (𝜑 → (Base‘𝐶) = (Base‘𝐷))
205, 19syl5eq 2817 . . . 4 (𝜑𝐵 = (Base‘𝐷))
218, 20eleqtrd 2852 . . 3 (𝜑𝑋 ∈ (Base‘𝐷))
229, 20eleqtrd 2852 . . 3 (𝜑𝑌 ∈ (Base‘𝐷))
2310, 20eleqtrd 2852 . . 3 (𝜑𝑍 ∈ (Base‘𝐷))
245, 6, 16, 18, 8, 9homfeqval 16564 . . . 4 (𝜑 → (𝑋𝐻𝑌) = (𝑋(Hom ‘𝐷)𝑌))
2511, 24eleqtrd 2852 . . 3 (𝜑𝐹 ∈ (𝑋(Hom ‘𝐷)𝑌))
265, 6, 16, 18, 9, 10homfeqval 16564 . . . 4 (𝜑 → (𝑌𝐻𝑍) = (𝑌(Hom ‘𝐷)𝑍))
2712, 26eleqtrd 2852 . . 3 (𝜑𝐺 ∈ (𝑌(Hom ‘𝐷)𝑍))
2814, 15, 16, 17, 21, 22, 23, 25, 27comfval 16567 . 2 (𝜑 → (𝐺(⟨𝑋, 𝑌⟩(compf𝐷)𝑍)𝐹) = (𝐺(⟨𝑋, 𝑌 𝑍)𝐹))
293, 13, 283eqtr3d 2813 1 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺(⟨𝑋, 𝑌 𝑍)𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1631  wcel 2145  cop 4322  cfv 6031  (class class class)co 6793  Basecbs 16064  Hom chom 16160  compcco 16161  Homf chomf 16534  compfccomf 16535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-1st 7315  df-2nd 7316  df-homf 16538  df-comf 16539
This theorem is referenced by:  catpropd  16576  cidpropd  16577  oppccomfpropd  16594  monpropd  16604  funcpropd  16767  natpropd  16843  fucpropd  16844  xpcpropd  17056  hofpropd  17115
  Copyright terms: Public domain W3C validator