MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  comfeqval Structured version   Visualization version   GIF version

Theorem comfeqval 17616
Description: Equality of two compositions. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
comfeqval.b 𝐵 = (Base‘𝐶)
comfeqval.h 𝐻 = (Hom ‘𝐶)
comfeqval.1 · = (comp‘𝐶)
comfeqval.2 = (comp‘𝐷)
comfeqval.3 (𝜑 → (Homf𝐶) = (Homf𝐷))
comfeqval.4 (𝜑 → (compf𝐶) = (compf𝐷))
comfeqval.x (𝜑𝑋𝐵)
comfeqval.y (𝜑𝑌𝐵)
comfeqval.z (𝜑𝑍𝐵)
comfeqval.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
comfeqval.g (𝜑𝐺 ∈ (𝑌𝐻𝑍))
Assertion
Ref Expression
comfeqval (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺(⟨𝑋, 𝑌 𝑍)𝐹))

Proof of Theorem comfeqval
StepHypRef Expression
1 comfeqval.4 . . . 4 (𝜑 → (compf𝐶) = (compf𝐷))
21oveqd 7369 . . 3 (𝜑 → (⟨𝑋, 𝑌⟩(compf𝐶)𝑍) = (⟨𝑋, 𝑌⟩(compf𝐷)𝑍))
32oveqd 7369 . 2 (𝜑 → (𝐺(⟨𝑋, 𝑌⟩(compf𝐶)𝑍)𝐹) = (𝐺(⟨𝑋, 𝑌⟩(compf𝐷)𝑍)𝐹))
4 eqid 2733 . . 3 (compf𝐶) = (compf𝐶)
5 comfeqval.b . . 3 𝐵 = (Base‘𝐶)
6 comfeqval.h . . 3 𝐻 = (Hom ‘𝐶)
7 comfeqval.1 . . 3 · = (comp‘𝐶)
8 comfeqval.x . . 3 (𝜑𝑋𝐵)
9 comfeqval.y . . 3 (𝜑𝑌𝐵)
10 comfeqval.z . . 3 (𝜑𝑍𝐵)
11 comfeqval.f . . 3 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
12 comfeqval.g . . 3 (𝜑𝐺 ∈ (𝑌𝐻𝑍))
134, 5, 6, 7, 8, 9, 10, 11, 12comfval 17608 . 2 (𝜑 → (𝐺(⟨𝑋, 𝑌⟩(compf𝐶)𝑍)𝐹) = (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))
14 eqid 2733 . . 3 (compf𝐷) = (compf𝐷)
15 eqid 2733 . . 3 (Base‘𝐷) = (Base‘𝐷)
16 eqid 2733 . . 3 (Hom ‘𝐷) = (Hom ‘𝐷)
17 comfeqval.2 . . 3 = (comp‘𝐷)
18 comfeqval.3 . . . . . 6 (𝜑 → (Homf𝐶) = (Homf𝐷))
1918homfeqbas 17604 . . . . 5 (𝜑 → (Base‘𝐶) = (Base‘𝐷))
205, 19eqtrid 2780 . . . 4 (𝜑𝐵 = (Base‘𝐷))
218, 20eleqtrd 2835 . . 3 (𝜑𝑋 ∈ (Base‘𝐷))
229, 20eleqtrd 2835 . . 3 (𝜑𝑌 ∈ (Base‘𝐷))
2310, 20eleqtrd 2835 . . 3 (𝜑𝑍 ∈ (Base‘𝐷))
245, 6, 16, 18, 8, 9homfeqval 17605 . . . 4 (𝜑 → (𝑋𝐻𝑌) = (𝑋(Hom ‘𝐷)𝑌))
2511, 24eleqtrd 2835 . . 3 (𝜑𝐹 ∈ (𝑋(Hom ‘𝐷)𝑌))
265, 6, 16, 18, 9, 10homfeqval 17605 . . . 4 (𝜑 → (𝑌𝐻𝑍) = (𝑌(Hom ‘𝐷)𝑍))
2712, 26eleqtrd 2835 . . 3 (𝜑𝐺 ∈ (𝑌(Hom ‘𝐷)𝑍))
2814, 15, 16, 17, 21, 22, 23, 25, 27comfval 17608 . 2 (𝜑 → (𝐺(⟨𝑋, 𝑌⟩(compf𝐷)𝑍)𝐹) = (𝐺(⟨𝑋, 𝑌 𝑍)𝐹))
293, 13, 283eqtr3d 2776 1 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺(⟨𝑋, 𝑌 𝑍)𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  cop 4581  cfv 6486  (class class class)co 7352  Basecbs 17122  Hom chom 17174  compcco 17175  Homf chomf 17574  compfccomf 17575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-homf 17578  df-comf 17579
This theorem is referenced by:  catpropd  17617  cidpropd  17618  oppccomfpropd  17635  monpropd  17646  funcpropd  17811  natpropd  17888  fucpropd  17889  xpcpropd  18116  hofpropd  18175  sectpropdlem  49161  uppropd  49306
  Copyright terms: Public domain W3C validator