MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  comfeqval Structured version   Visualization version   GIF version

Theorem comfeqval 17657
Description: Equality of two compositions. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
comfeqval.b ๐ต = (Baseโ€˜๐ถ)
comfeqval.h ๐ป = (Hom โ€˜๐ถ)
comfeqval.1 ยท = (compโ€˜๐ถ)
comfeqval.2 โˆ™ = (compโ€˜๐ท)
comfeqval.3 (๐œ‘ โ†’ (Homf โ€˜๐ถ) = (Homf โ€˜๐ท))
comfeqval.4 (๐œ‘ โ†’ (compfโ€˜๐ถ) = (compfโ€˜๐ท))
comfeqval.x (๐œ‘ โ†’ ๐‘‹ โˆˆ ๐ต)
comfeqval.y (๐œ‘ โ†’ ๐‘Œ โˆˆ ๐ต)
comfeqval.z (๐œ‘ โ†’ ๐‘ โˆˆ ๐ต)
comfeqval.f (๐œ‘ โ†’ ๐น โˆˆ (๐‘‹๐ป๐‘Œ))
comfeqval.g (๐œ‘ โ†’ ๐บ โˆˆ (๐‘Œ๐ป๐‘))
Assertion
Ref Expression
comfeqval (๐œ‘ โ†’ (๐บ(โŸจ๐‘‹, ๐‘ŒโŸฉ ยท ๐‘)๐น) = (๐บ(โŸจ๐‘‹, ๐‘ŒโŸฉ โˆ™ ๐‘)๐น))

Proof of Theorem comfeqval
StepHypRef Expression
1 comfeqval.4 . . . 4 (๐œ‘ โ†’ (compfโ€˜๐ถ) = (compfโ€˜๐ท))
21oveqd 7429 . . 3 (๐œ‘ โ†’ (โŸจ๐‘‹, ๐‘ŒโŸฉ(compfโ€˜๐ถ)๐‘) = (โŸจ๐‘‹, ๐‘ŒโŸฉ(compfโ€˜๐ท)๐‘))
32oveqd 7429 . 2 (๐œ‘ โ†’ (๐บ(โŸจ๐‘‹, ๐‘ŒโŸฉ(compfโ€˜๐ถ)๐‘)๐น) = (๐บ(โŸจ๐‘‹, ๐‘ŒโŸฉ(compfโ€˜๐ท)๐‘)๐น))
4 eqid 2731 . . 3 (compfโ€˜๐ถ) = (compfโ€˜๐ถ)
5 comfeqval.b . . 3 ๐ต = (Baseโ€˜๐ถ)
6 comfeqval.h . . 3 ๐ป = (Hom โ€˜๐ถ)
7 comfeqval.1 . . 3 ยท = (compโ€˜๐ถ)
8 comfeqval.x . . 3 (๐œ‘ โ†’ ๐‘‹ โˆˆ ๐ต)
9 comfeqval.y . . 3 (๐œ‘ โ†’ ๐‘Œ โˆˆ ๐ต)
10 comfeqval.z . . 3 (๐œ‘ โ†’ ๐‘ โˆˆ ๐ต)
11 comfeqval.f . . 3 (๐œ‘ โ†’ ๐น โˆˆ (๐‘‹๐ป๐‘Œ))
12 comfeqval.g . . 3 (๐œ‘ โ†’ ๐บ โˆˆ (๐‘Œ๐ป๐‘))
134, 5, 6, 7, 8, 9, 10, 11, 12comfval 17649 . 2 (๐œ‘ โ†’ (๐บ(โŸจ๐‘‹, ๐‘ŒโŸฉ(compfโ€˜๐ถ)๐‘)๐น) = (๐บ(โŸจ๐‘‹, ๐‘ŒโŸฉ ยท ๐‘)๐น))
14 eqid 2731 . . 3 (compfโ€˜๐ท) = (compfโ€˜๐ท)
15 eqid 2731 . . 3 (Baseโ€˜๐ท) = (Baseโ€˜๐ท)
16 eqid 2731 . . 3 (Hom โ€˜๐ท) = (Hom โ€˜๐ท)
17 comfeqval.2 . . 3 โˆ™ = (compโ€˜๐ท)
18 comfeqval.3 . . . . . 6 (๐œ‘ โ†’ (Homf โ€˜๐ถ) = (Homf โ€˜๐ท))
1918homfeqbas 17645 . . . . 5 (๐œ‘ โ†’ (Baseโ€˜๐ถ) = (Baseโ€˜๐ท))
205, 19eqtrid 2783 . . . 4 (๐œ‘ โ†’ ๐ต = (Baseโ€˜๐ท))
218, 20eleqtrd 2834 . . 3 (๐œ‘ โ†’ ๐‘‹ โˆˆ (Baseโ€˜๐ท))
229, 20eleqtrd 2834 . . 3 (๐œ‘ โ†’ ๐‘Œ โˆˆ (Baseโ€˜๐ท))
2310, 20eleqtrd 2834 . . 3 (๐œ‘ โ†’ ๐‘ โˆˆ (Baseโ€˜๐ท))
245, 6, 16, 18, 8, 9homfeqval 17646 . . . 4 (๐œ‘ โ†’ (๐‘‹๐ป๐‘Œ) = (๐‘‹(Hom โ€˜๐ท)๐‘Œ))
2511, 24eleqtrd 2834 . . 3 (๐œ‘ โ†’ ๐น โˆˆ (๐‘‹(Hom โ€˜๐ท)๐‘Œ))
265, 6, 16, 18, 9, 10homfeqval 17646 . . . 4 (๐œ‘ โ†’ (๐‘Œ๐ป๐‘) = (๐‘Œ(Hom โ€˜๐ท)๐‘))
2712, 26eleqtrd 2834 . . 3 (๐œ‘ โ†’ ๐บ โˆˆ (๐‘Œ(Hom โ€˜๐ท)๐‘))
2814, 15, 16, 17, 21, 22, 23, 25, 27comfval 17649 . 2 (๐œ‘ โ†’ (๐บ(โŸจ๐‘‹, ๐‘ŒโŸฉ(compfโ€˜๐ท)๐‘)๐น) = (๐บ(โŸจ๐‘‹, ๐‘ŒโŸฉ โˆ™ ๐‘)๐น))
293, 13, 283eqtr3d 2779 1 (๐œ‘ โ†’ (๐บ(โŸจ๐‘‹, ๐‘ŒโŸฉ ยท ๐‘)๐น) = (๐บ(โŸจ๐‘‹, ๐‘ŒโŸฉ โˆ™ ๐‘)๐น))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   = wceq 1540   โˆˆ wcel 2105  โŸจcop 4635  โ€˜cfv 6544  (class class class)co 7412  Basecbs 17149  Hom chom 17213  compcco 17214  Homf chomf 17615  compfccomf 17616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7978  df-2nd 7979  df-homf 17619  df-comf 17620
This theorem is referenced by:  catpropd  17658  cidpropd  17659  oppccomfpropd  17678  monpropd  17689  funcpropd  17856  natpropd  17934  fucpropd  17935  xpcpropd  18166  hofpropd  18225
  Copyright terms: Public domain W3C validator