MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  comfeqval Structured version   Visualization version   GIF version

Theorem comfeqval 17487
Description: Equality of two compositions. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
comfeqval.b 𝐵 = (Base‘𝐶)
comfeqval.h 𝐻 = (Hom ‘𝐶)
comfeqval.1 · = (comp‘𝐶)
comfeqval.2 = (comp‘𝐷)
comfeqval.3 (𝜑 → (Homf𝐶) = (Homf𝐷))
comfeqval.4 (𝜑 → (compf𝐶) = (compf𝐷))
comfeqval.x (𝜑𝑋𝐵)
comfeqval.y (𝜑𝑌𝐵)
comfeqval.z (𝜑𝑍𝐵)
comfeqval.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
comfeqval.g (𝜑𝐺 ∈ (𝑌𝐻𝑍))
Assertion
Ref Expression
comfeqval (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺(⟨𝑋, 𝑌 𝑍)𝐹))

Proof of Theorem comfeqval
StepHypRef Expression
1 comfeqval.4 . . . 4 (𝜑 → (compf𝐶) = (compf𝐷))
21oveqd 7332 . . 3 (𝜑 → (⟨𝑋, 𝑌⟩(compf𝐶)𝑍) = (⟨𝑋, 𝑌⟩(compf𝐷)𝑍))
32oveqd 7332 . 2 (𝜑 → (𝐺(⟨𝑋, 𝑌⟩(compf𝐶)𝑍)𝐹) = (𝐺(⟨𝑋, 𝑌⟩(compf𝐷)𝑍)𝐹))
4 eqid 2737 . . 3 (compf𝐶) = (compf𝐶)
5 comfeqval.b . . 3 𝐵 = (Base‘𝐶)
6 comfeqval.h . . 3 𝐻 = (Hom ‘𝐶)
7 comfeqval.1 . . 3 · = (comp‘𝐶)
8 comfeqval.x . . 3 (𝜑𝑋𝐵)
9 comfeqval.y . . 3 (𝜑𝑌𝐵)
10 comfeqval.z . . 3 (𝜑𝑍𝐵)
11 comfeqval.f . . 3 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
12 comfeqval.g . . 3 (𝜑𝐺 ∈ (𝑌𝐻𝑍))
134, 5, 6, 7, 8, 9, 10, 11, 12comfval 17479 . 2 (𝜑 → (𝐺(⟨𝑋, 𝑌⟩(compf𝐶)𝑍)𝐹) = (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))
14 eqid 2737 . . 3 (compf𝐷) = (compf𝐷)
15 eqid 2737 . . 3 (Base‘𝐷) = (Base‘𝐷)
16 eqid 2737 . . 3 (Hom ‘𝐷) = (Hom ‘𝐷)
17 comfeqval.2 . . 3 = (comp‘𝐷)
18 comfeqval.3 . . . . . 6 (𝜑 → (Homf𝐶) = (Homf𝐷))
1918homfeqbas 17475 . . . . 5 (𝜑 → (Base‘𝐶) = (Base‘𝐷))
205, 19eqtrid 2789 . . . 4 (𝜑𝐵 = (Base‘𝐷))
218, 20eleqtrd 2840 . . 3 (𝜑𝑋 ∈ (Base‘𝐷))
229, 20eleqtrd 2840 . . 3 (𝜑𝑌 ∈ (Base‘𝐷))
2310, 20eleqtrd 2840 . . 3 (𝜑𝑍 ∈ (Base‘𝐷))
245, 6, 16, 18, 8, 9homfeqval 17476 . . . 4 (𝜑 → (𝑋𝐻𝑌) = (𝑋(Hom ‘𝐷)𝑌))
2511, 24eleqtrd 2840 . . 3 (𝜑𝐹 ∈ (𝑋(Hom ‘𝐷)𝑌))
265, 6, 16, 18, 9, 10homfeqval 17476 . . . 4 (𝜑 → (𝑌𝐻𝑍) = (𝑌(Hom ‘𝐷)𝑍))
2712, 26eleqtrd 2840 . . 3 (𝜑𝐺 ∈ (𝑌(Hom ‘𝐷)𝑍))
2814, 15, 16, 17, 21, 22, 23, 25, 27comfval 17479 . 2 (𝜑 → (𝐺(⟨𝑋, 𝑌⟩(compf𝐷)𝑍)𝐹) = (𝐺(⟨𝑋, 𝑌 𝑍)𝐹))
293, 13, 283eqtr3d 2785 1 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺(⟨𝑋, 𝑌 𝑍)𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  cop 4577  cfv 6465  (class class class)co 7315  Basecbs 16982  Hom chom 17043  compcco 17044  Homf chomf 17445  compfccomf 17446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5224  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7628
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-id 5507  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-ov 7318  df-oprab 7319  df-mpo 7320  df-1st 7876  df-2nd 7877  df-homf 17449  df-comf 17450
This theorem is referenced by:  catpropd  17488  cidpropd  17489  oppccomfpropd  17508  monpropd  17519  funcpropd  17686  natpropd  17764  fucpropd  17765  xpcpropd  17996  hofpropd  18055
  Copyright terms: Public domain W3C validator