![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > comfeqval | Structured version Visualization version GIF version |
Description: Equality of two compositions. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
comfeqval.b | ⊢ 𝐵 = (Base‘𝐶) |
comfeqval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
comfeqval.1 | ⊢ · = (comp‘𝐶) |
comfeqval.2 | ⊢ ∙ = (comp‘𝐷) |
comfeqval.3 | ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) |
comfeqval.4 | ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) |
comfeqval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
comfeqval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
comfeqval.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
comfeqval.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
comfeqval.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) |
Ref | Expression |
---|---|
comfeqval | ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉 ∙ 𝑍)𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | comfeqval.4 | . . . 4 ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) | |
2 | 1 | oveqd 7441 | . . 3 ⊢ (𝜑 → (〈𝑋, 𝑌〉(compf‘𝐶)𝑍) = (〈𝑋, 𝑌〉(compf‘𝐷)𝑍)) |
3 | 2 | oveqd 7441 | . 2 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉(compf‘𝐶)𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉(compf‘𝐷)𝑍)𝐹)) |
4 | eqid 2726 | . . 3 ⊢ (compf‘𝐶) = (compf‘𝐶) | |
5 | comfeqval.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
6 | comfeqval.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
7 | comfeqval.1 | . . 3 ⊢ · = (comp‘𝐶) | |
8 | comfeqval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
9 | comfeqval.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
10 | comfeqval.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
11 | comfeqval.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
12 | comfeqval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) | |
13 | 4, 5, 6, 7, 8, 9, 10, 11, 12 | comfval 17713 | . 2 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉(compf‘𝐶)𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹)) |
14 | eqid 2726 | . . 3 ⊢ (compf‘𝐷) = (compf‘𝐷) | |
15 | eqid 2726 | . . 3 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
16 | eqid 2726 | . . 3 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
17 | comfeqval.2 | . . 3 ⊢ ∙ = (comp‘𝐷) | |
18 | comfeqval.3 | . . . . . 6 ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) | |
19 | 18 | homfeqbas 17709 | . . . . 5 ⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) |
20 | 5, 19 | eqtrid 2778 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐷)) |
21 | 8, 20 | eleqtrd 2828 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐷)) |
22 | 9, 20 | eleqtrd 2828 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐷)) |
23 | 10, 20 | eleqtrd 2828 | . . 3 ⊢ (𝜑 → 𝑍 ∈ (Base‘𝐷)) |
24 | 5, 6, 16, 18, 8, 9 | homfeqval 17710 | . . . 4 ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑋(Hom ‘𝐷)𝑌)) |
25 | 11, 24 | eleqtrd 2828 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋(Hom ‘𝐷)𝑌)) |
26 | 5, 6, 16, 18, 9, 10 | homfeqval 17710 | . . . 4 ⊢ (𝜑 → (𝑌𝐻𝑍) = (𝑌(Hom ‘𝐷)𝑍)) |
27 | 12, 26 | eleqtrd 2828 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝑌(Hom ‘𝐷)𝑍)) |
28 | 14, 15, 16, 17, 21, 22, 23, 25, 27 | comfval 17713 | . 2 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉(compf‘𝐷)𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉 ∙ 𝑍)𝐹)) |
29 | 3, 13, 28 | 3eqtr3d 2774 | 1 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉 ∙ 𝑍)𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 〈cop 4639 ‘cfv 6554 (class class class)co 7424 Basecbs 17213 Hom chom 17277 compcco 17278 Homf chomf 17679 compfccomf 17680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-ov 7427 df-oprab 7428 df-mpo 7429 df-1st 8003 df-2nd 8004 df-homf 17683 df-comf 17684 |
This theorem is referenced by: catpropd 17722 cidpropd 17723 oppccomfpropd 17742 monpropd 17753 funcpropd 17922 natpropd 18001 fucpropd 18002 xpcpropd 18233 hofpropd 18292 |
Copyright terms: Public domain | W3C validator |