![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > comfeqval | Structured version Visualization version GIF version |
Description: Equality of two compositions. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
comfeqval.b | ⊢ 𝐵 = (Base‘𝐶) |
comfeqval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
comfeqval.1 | ⊢ · = (comp‘𝐶) |
comfeqval.2 | ⊢ ∙ = (comp‘𝐷) |
comfeqval.3 | ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) |
comfeqval.4 | ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) |
comfeqval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
comfeqval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
comfeqval.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
comfeqval.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
comfeqval.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) |
Ref | Expression |
---|---|
comfeqval | ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉 ∙ 𝑍)𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | comfeqval.4 | . . . 4 ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) | |
2 | 1 | oveqd 7448 | . . 3 ⊢ (𝜑 → (〈𝑋, 𝑌〉(compf‘𝐶)𝑍) = (〈𝑋, 𝑌〉(compf‘𝐷)𝑍)) |
3 | 2 | oveqd 7448 | . 2 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉(compf‘𝐶)𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉(compf‘𝐷)𝑍)𝐹)) |
4 | eqid 2735 | . . 3 ⊢ (compf‘𝐶) = (compf‘𝐶) | |
5 | comfeqval.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
6 | comfeqval.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
7 | comfeqval.1 | . . 3 ⊢ · = (comp‘𝐶) | |
8 | comfeqval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
9 | comfeqval.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
10 | comfeqval.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
11 | comfeqval.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
12 | comfeqval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) | |
13 | 4, 5, 6, 7, 8, 9, 10, 11, 12 | comfval 17745 | . 2 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉(compf‘𝐶)𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹)) |
14 | eqid 2735 | . . 3 ⊢ (compf‘𝐷) = (compf‘𝐷) | |
15 | eqid 2735 | . . 3 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
16 | eqid 2735 | . . 3 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
17 | comfeqval.2 | . . 3 ⊢ ∙ = (comp‘𝐷) | |
18 | comfeqval.3 | . . . . . 6 ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) | |
19 | 18 | homfeqbas 17741 | . . . . 5 ⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) |
20 | 5, 19 | eqtrid 2787 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐷)) |
21 | 8, 20 | eleqtrd 2841 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐷)) |
22 | 9, 20 | eleqtrd 2841 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐷)) |
23 | 10, 20 | eleqtrd 2841 | . . 3 ⊢ (𝜑 → 𝑍 ∈ (Base‘𝐷)) |
24 | 5, 6, 16, 18, 8, 9 | homfeqval 17742 | . . . 4 ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑋(Hom ‘𝐷)𝑌)) |
25 | 11, 24 | eleqtrd 2841 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋(Hom ‘𝐷)𝑌)) |
26 | 5, 6, 16, 18, 9, 10 | homfeqval 17742 | . . . 4 ⊢ (𝜑 → (𝑌𝐻𝑍) = (𝑌(Hom ‘𝐷)𝑍)) |
27 | 12, 26 | eleqtrd 2841 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝑌(Hom ‘𝐷)𝑍)) |
28 | 14, 15, 16, 17, 21, 22, 23, 25, 27 | comfval 17745 | . 2 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉(compf‘𝐷)𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉 ∙ 𝑍)𝐹)) |
29 | 3, 13, 28 | 3eqtr3d 2783 | 1 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉 ∙ 𝑍)𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 〈cop 4637 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 Hom chom 17309 compcco 17310 Homf chomf 17711 compfccomf 17712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-homf 17715 df-comf 17716 |
This theorem is referenced by: catpropd 17754 cidpropd 17755 oppccomfpropd 17774 monpropd 17785 funcpropd 17954 natpropd 18033 fucpropd 18034 xpcpropd 18265 hofpropd 18324 |
Copyright terms: Public domain | W3C validator |