| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > comfeqval | Structured version Visualization version GIF version | ||
| Description: Equality of two compositions. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| comfeqval.b | ⊢ 𝐵 = (Base‘𝐶) |
| comfeqval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| comfeqval.1 | ⊢ · = (comp‘𝐶) |
| comfeqval.2 | ⊢ ∙ = (comp‘𝐷) |
| comfeqval.3 | ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) |
| comfeqval.4 | ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) |
| comfeqval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| comfeqval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| comfeqval.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| comfeqval.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
| comfeqval.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) |
| Ref | Expression |
|---|---|
| comfeqval | ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉 ∙ 𝑍)𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | comfeqval.4 | . . . 4 ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) | |
| 2 | 1 | oveqd 7363 | . . 3 ⊢ (𝜑 → (〈𝑋, 𝑌〉(compf‘𝐶)𝑍) = (〈𝑋, 𝑌〉(compf‘𝐷)𝑍)) |
| 3 | 2 | oveqd 7363 | . 2 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉(compf‘𝐶)𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉(compf‘𝐷)𝑍)𝐹)) |
| 4 | eqid 2731 | . . 3 ⊢ (compf‘𝐶) = (compf‘𝐶) | |
| 5 | comfeqval.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 6 | comfeqval.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 7 | comfeqval.1 | . . 3 ⊢ · = (comp‘𝐶) | |
| 8 | comfeqval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 9 | comfeqval.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 10 | comfeqval.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 11 | comfeqval.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
| 12 | comfeqval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) | |
| 13 | 4, 5, 6, 7, 8, 9, 10, 11, 12 | comfval 17603 | . 2 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉(compf‘𝐶)𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹)) |
| 14 | eqid 2731 | . . 3 ⊢ (compf‘𝐷) = (compf‘𝐷) | |
| 15 | eqid 2731 | . . 3 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 16 | eqid 2731 | . . 3 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 17 | comfeqval.2 | . . 3 ⊢ ∙ = (comp‘𝐷) | |
| 18 | comfeqval.3 | . . . . . 6 ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) | |
| 19 | 18 | homfeqbas 17599 | . . . . 5 ⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) |
| 20 | 5, 19 | eqtrid 2778 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐷)) |
| 21 | 8, 20 | eleqtrd 2833 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐷)) |
| 22 | 9, 20 | eleqtrd 2833 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐷)) |
| 23 | 10, 20 | eleqtrd 2833 | . . 3 ⊢ (𝜑 → 𝑍 ∈ (Base‘𝐷)) |
| 24 | 5, 6, 16, 18, 8, 9 | homfeqval 17600 | . . . 4 ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑋(Hom ‘𝐷)𝑌)) |
| 25 | 11, 24 | eleqtrd 2833 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋(Hom ‘𝐷)𝑌)) |
| 26 | 5, 6, 16, 18, 9, 10 | homfeqval 17600 | . . . 4 ⊢ (𝜑 → (𝑌𝐻𝑍) = (𝑌(Hom ‘𝐷)𝑍)) |
| 27 | 12, 26 | eleqtrd 2833 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝑌(Hom ‘𝐷)𝑍)) |
| 28 | 14, 15, 16, 17, 21, 22, 23, 25, 27 | comfval 17603 | . 2 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉(compf‘𝐷)𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉 ∙ 𝑍)𝐹)) |
| 29 | 3, 13, 28 | 3eqtr3d 2774 | 1 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉 ∙ 𝑍)𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 〈cop 4582 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 Hom chom 17169 compcco 17170 Homf chomf 17569 compfccomf 17570 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-homf 17573 df-comf 17574 |
| This theorem is referenced by: catpropd 17612 cidpropd 17613 oppccomfpropd 17630 monpropd 17641 funcpropd 17806 natpropd 17883 fucpropd 17884 xpcpropd 18111 hofpropd 18170 sectpropdlem 49067 uppropd 49212 |
| Copyright terms: Public domain | W3C validator |