Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > comfeqval | Structured version Visualization version GIF version |
Description: Equality of two compositions. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
comfeqval.b | ⊢ 𝐵 = (Base‘𝐶) |
comfeqval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
comfeqval.1 | ⊢ · = (comp‘𝐶) |
comfeqval.2 | ⊢ ∙ = (comp‘𝐷) |
comfeqval.3 | ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) |
comfeqval.4 | ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) |
comfeqval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
comfeqval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
comfeqval.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
comfeqval.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
comfeqval.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) |
Ref | Expression |
---|---|
comfeqval | ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉 ∙ 𝑍)𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | comfeqval.4 | . . . 4 ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) | |
2 | 1 | oveqd 7332 | . . 3 ⊢ (𝜑 → (〈𝑋, 𝑌〉(compf‘𝐶)𝑍) = (〈𝑋, 𝑌〉(compf‘𝐷)𝑍)) |
3 | 2 | oveqd 7332 | . 2 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉(compf‘𝐶)𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉(compf‘𝐷)𝑍)𝐹)) |
4 | eqid 2737 | . . 3 ⊢ (compf‘𝐶) = (compf‘𝐶) | |
5 | comfeqval.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
6 | comfeqval.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
7 | comfeqval.1 | . . 3 ⊢ · = (comp‘𝐶) | |
8 | comfeqval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
9 | comfeqval.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
10 | comfeqval.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
11 | comfeqval.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
12 | comfeqval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) | |
13 | 4, 5, 6, 7, 8, 9, 10, 11, 12 | comfval 17479 | . 2 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉(compf‘𝐶)𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹)) |
14 | eqid 2737 | . . 3 ⊢ (compf‘𝐷) = (compf‘𝐷) | |
15 | eqid 2737 | . . 3 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
16 | eqid 2737 | . . 3 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
17 | comfeqval.2 | . . 3 ⊢ ∙ = (comp‘𝐷) | |
18 | comfeqval.3 | . . . . . 6 ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) | |
19 | 18 | homfeqbas 17475 | . . . . 5 ⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) |
20 | 5, 19 | eqtrid 2789 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐷)) |
21 | 8, 20 | eleqtrd 2840 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐷)) |
22 | 9, 20 | eleqtrd 2840 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐷)) |
23 | 10, 20 | eleqtrd 2840 | . . 3 ⊢ (𝜑 → 𝑍 ∈ (Base‘𝐷)) |
24 | 5, 6, 16, 18, 8, 9 | homfeqval 17476 | . . . 4 ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑋(Hom ‘𝐷)𝑌)) |
25 | 11, 24 | eleqtrd 2840 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋(Hom ‘𝐷)𝑌)) |
26 | 5, 6, 16, 18, 9, 10 | homfeqval 17476 | . . . 4 ⊢ (𝜑 → (𝑌𝐻𝑍) = (𝑌(Hom ‘𝐷)𝑍)) |
27 | 12, 26 | eleqtrd 2840 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝑌(Hom ‘𝐷)𝑍)) |
28 | 14, 15, 16, 17, 21, 22, 23, 25, 27 | comfval 17479 | . 2 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉(compf‘𝐷)𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉 ∙ 𝑍)𝐹)) |
29 | 3, 13, 28 | 3eqtr3d 2785 | 1 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉 ∙ 𝑍)𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 〈cop 4577 ‘cfv 6465 (class class class)co 7315 Basecbs 16982 Hom chom 17043 compcco 17044 Homf chomf 17445 compfccomf 17446 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-ov 7318 df-oprab 7319 df-mpo 7320 df-1st 7876 df-2nd 7877 df-homf 17449 df-comf 17450 |
This theorem is referenced by: catpropd 17488 cidpropd 17489 oppccomfpropd 17508 monpropd 17519 funcpropd 17686 natpropd 17764 fucpropd 17765 xpcpropd 17996 hofpropd 18055 |
Copyright terms: Public domain | W3C validator |