| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > comfeqval | Structured version Visualization version GIF version | ||
| Description: Equality of two compositions. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| comfeqval.b | ⊢ 𝐵 = (Base‘𝐶) |
| comfeqval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| comfeqval.1 | ⊢ · = (comp‘𝐶) |
| comfeqval.2 | ⊢ ∙ = (comp‘𝐷) |
| comfeqval.3 | ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) |
| comfeqval.4 | ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) |
| comfeqval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| comfeqval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| comfeqval.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| comfeqval.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
| comfeqval.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) |
| Ref | Expression |
|---|---|
| comfeqval | ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉 ∙ 𝑍)𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | comfeqval.4 | . . . 4 ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) | |
| 2 | 1 | oveqd 7407 | . . 3 ⊢ (𝜑 → (〈𝑋, 𝑌〉(compf‘𝐶)𝑍) = (〈𝑋, 𝑌〉(compf‘𝐷)𝑍)) |
| 3 | 2 | oveqd 7407 | . 2 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉(compf‘𝐶)𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉(compf‘𝐷)𝑍)𝐹)) |
| 4 | eqid 2730 | . . 3 ⊢ (compf‘𝐶) = (compf‘𝐶) | |
| 5 | comfeqval.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 6 | comfeqval.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 7 | comfeqval.1 | . . 3 ⊢ · = (comp‘𝐶) | |
| 8 | comfeqval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 9 | comfeqval.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 10 | comfeqval.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 11 | comfeqval.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
| 12 | comfeqval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) | |
| 13 | 4, 5, 6, 7, 8, 9, 10, 11, 12 | comfval 17668 | . 2 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉(compf‘𝐶)𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹)) |
| 14 | eqid 2730 | . . 3 ⊢ (compf‘𝐷) = (compf‘𝐷) | |
| 15 | eqid 2730 | . . 3 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 16 | eqid 2730 | . . 3 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 17 | comfeqval.2 | . . 3 ⊢ ∙ = (comp‘𝐷) | |
| 18 | comfeqval.3 | . . . . . 6 ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) | |
| 19 | 18 | homfeqbas 17664 | . . . . 5 ⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) |
| 20 | 5, 19 | eqtrid 2777 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐷)) |
| 21 | 8, 20 | eleqtrd 2831 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐷)) |
| 22 | 9, 20 | eleqtrd 2831 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐷)) |
| 23 | 10, 20 | eleqtrd 2831 | . . 3 ⊢ (𝜑 → 𝑍 ∈ (Base‘𝐷)) |
| 24 | 5, 6, 16, 18, 8, 9 | homfeqval 17665 | . . . 4 ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑋(Hom ‘𝐷)𝑌)) |
| 25 | 11, 24 | eleqtrd 2831 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋(Hom ‘𝐷)𝑌)) |
| 26 | 5, 6, 16, 18, 9, 10 | homfeqval 17665 | . . . 4 ⊢ (𝜑 → (𝑌𝐻𝑍) = (𝑌(Hom ‘𝐷)𝑍)) |
| 27 | 12, 26 | eleqtrd 2831 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝑌(Hom ‘𝐷)𝑍)) |
| 28 | 14, 15, 16, 17, 21, 22, 23, 25, 27 | comfval 17668 | . 2 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉(compf‘𝐷)𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉 ∙ 𝑍)𝐹)) |
| 29 | 3, 13, 28 | 3eqtr3d 2773 | 1 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉 ∙ 𝑍)𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4598 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 Hom chom 17238 compcco 17239 Homf chomf 17634 compfccomf 17635 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-homf 17638 df-comf 17639 |
| This theorem is referenced by: catpropd 17677 cidpropd 17678 oppccomfpropd 17695 monpropd 17706 funcpropd 17871 natpropd 17948 fucpropd 17949 xpcpropd 18176 hofpropd 18235 sectpropdlem 49029 uppropd 49174 |
| Copyright terms: Public domain | W3C validator |