MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  comfeqval Structured version   Visualization version   GIF version

Theorem comfeqval 17669
Description: Equality of two compositions. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
comfeqval.b 𝐵 = (Base‘𝐶)
comfeqval.h 𝐻 = (Hom ‘𝐶)
comfeqval.1 · = (comp‘𝐶)
comfeqval.2 = (comp‘𝐷)
comfeqval.3 (𝜑 → (Homf𝐶) = (Homf𝐷))
comfeqval.4 (𝜑 → (compf𝐶) = (compf𝐷))
comfeqval.x (𝜑𝑋𝐵)
comfeqval.y (𝜑𝑌𝐵)
comfeqval.z (𝜑𝑍𝐵)
comfeqval.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
comfeqval.g (𝜑𝐺 ∈ (𝑌𝐻𝑍))
Assertion
Ref Expression
comfeqval (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺(⟨𝑋, 𝑌 𝑍)𝐹))

Proof of Theorem comfeqval
StepHypRef Expression
1 comfeqval.4 . . . 4 (𝜑 → (compf𝐶) = (compf𝐷))
21oveqd 7404 . . 3 (𝜑 → (⟨𝑋, 𝑌⟩(compf𝐶)𝑍) = (⟨𝑋, 𝑌⟩(compf𝐷)𝑍))
32oveqd 7404 . 2 (𝜑 → (𝐺(⟨𝑋, 𝑌⟩(compf𝐶)𝑍)𝐹) = (𝐺(⟨𝑋, 𝑌⟩(compf𝐷)𝑍)𝐹))
4 eqid 2729 . . 3 (compf𝐶) = (compf𝐶)
5 comfeqval.b . . 3 𝐵 = (Base‘𝐶)
6 comfeqval.h . . 3 𝐻 = (Hom ‘𝐶)
7 comfeqval.1 . . 3 · = (comp‘𝐶)
8 comfeqval.x . . 3 (𝜑𝑋𝐵)
9 comfeqval.y . . 3 (𝜑𝑌𝐵)
10 comfeqval.z . . 3 (𝜑𝑍𝐵)
11 comfeqval.f . . 3 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
12 comfeqval.g . . 3 (𝜑𝐺 ∈ (𝑌𝐻𝑍))
134, 5, 6, 7, 8, 9, 10, 11, 12comfval 17661 . 2 (𝜑 → (𝐺(⟨𝑋, 𝑌⟩(compf𝐶)𝑍)𝐹) = (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))
14 eqid 2729 . . 3 (compf𝐷) = (compf𝐷)
15 eqid 2729 . . 3 (Base‘𝐷) = (Base‘𝐷)
16 eqid 2729 . . 3 (Hom ‘𝐷) = (Hom ‘𝐷)
17 comfeqval.2 . . 3 = (comp‘𝐷)
18 comfeqval.3 . . . . . 6 (𝜑 → (Homf𝐶) = (Homf𝐷))
1918homfeqbas 17657 . . . . 5 (𝜑 → (Base‘𝐶) = (Base‘𝐷))
205, 19eqtrid 2776 . . . 4 (𝜑𝐵 = (Base‘𝐷))
218, 20eleqtrd 2830 . . 3 (𝜑𝑋 ∈ (Base‘𝐷))
229, 20eleqtrd 2830 . . 3 (𝜑𝑌 ∈ (Base‘𝐷))
2310, 20eleqtrd 2830 . . 3 (𝜑𝑍 ∈ (Base‘𝐷))
245, 6, 16, 18, 8, 9homfeqval 17658 . . . 4 (𝜑 → (𝑋𝐻𝑌) = (𝑋(Hom ‘𝐷)𝑌))
2511, 24eleqtrd 2830 . . 3 (𝜑𝐹 ∈ (𝑋(Hom ‘𝐷)𝑌))
265, 6, 16, 18, 9, 10homfeqval 17658 . . . 4 (𝜑 → (𝑌𝐻𝑍) = (𝑌(Hom ‘𝐷)𝑍))
2712, 26eleqtrd 2830 . . 3 (𝜑𝐺 ∈ (𝑌(Hom ‘𝐷)𝑍))
2814, 15, 16, 17, 21, 22, 23, 25, 27comfval 17661 . 2 (𝜑 → (𝐺(⟨𝑋, 𝑌⟩(compf𝐷)𝑍)𝐹) = (𝐺(⟨𝑋, 𝑌 𝑍)𝐹))
293, 13, 283eqtr3d 2772 1 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺(⟨𝑋, 𝑌 𝑍)𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cop 4595  cfv 6511  (class class class)co 7387  Basecbs 17179  Hom chom 17231  compcco 17232  Homf chomf 17627  compfccomf 17628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-homf 17631  df-comf 17632
This theorem is referenced by:  catpropd  17670  cidpropd  17671  oppccomfpropd  17688  monpropd  17699  funcpropd  17864  natpropd  17941  fucpropd  17942  xpcpropd  18169  hofpropd  18228  sectpropdlem  49025  uppropd  49170
  Copyright terms: Public domain W3C validator