| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > comfeqval | Structured version Visualization version GIF version | ||
| Description: Equality of two compositions. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| comfeqval.b | ⊢ 𝐵 = (Base‘𝐶) |
| comfeqval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| comfeqval.1 | ⊢ · = (comp‘𝐶) |
| comfeqval.2 | ⊢ ∙ = (comp‘𝐷) |
| comfeqval.3 | ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) |
| comfeqval.4 | ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) |
| comfeqval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| comfeqval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| comfeqval.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| comfeqval.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
| comfeqval.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) |
| Ref | Expression |
|---|---|
| comfeqval | ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉 ∙ 𝑍)𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | comfeqval.4 | . . . 4 ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) | |
| 2 | 1 | oveqd 7422 | . . 3 ⊢ (𝜑 → (〈𝑋, 𝑌〉(compf‘𝐶)𝑍) = (〈𝑋, 𝑌〉(compf‘𝐷)𝑍)) |
| 3 | 2 | oveqd 7422 | . 2 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉(compf‘𝐶)𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉(compf‘𝐷)𝑍)𝐹)) |
| 4 | eqid 2735 | . . 3 ⊢ (compf‘𝐶) = (compf‘𝐶) | |
| 5 | comfeqval.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 6 | comfeqval.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 7 | comfeqval.1 | . . 3 ⊢ · = (comp‘𝐶) | |
| 8 | comfeqval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 9 | comfeqval.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 10 | comfeqval.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 11 | comfeqval.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
| 12 | comfeqval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) | |
| 13 | 4, 5, 6, 7, 8, 9, 10, 11, 12 | comfval 17712 | . 2 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉(compf‘𝐶)𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹)) |
| 14 | eqid 2735 | . . 3 ⊢ (compf‘𝐷) = (compf‘𝐷) | |
| 15 | eqid 2735 | . . 3 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 16 | eqid 2735 | . . 3 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 17 | comfeqval.2 | . . 3 ⊢ ∙ = (comp‘𝐷) | |
| 18 | comfeqval.3 | . . . . . 6 ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) | |
| 19 | 18 | homfeqbas 17708 | . . . . 5 ⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) |
| 20 | 5, 19 | eqtrid 2782 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐷)) |
| 21 | 8, 20 | eleqtrd 2836 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐷)) |
| 22 | 9, 20 | eleqtrd 2836 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐷)) |
| 23 | 10, 20 | eleqtrd 2836 | . . 3 ⊢ (𝜑 → 𝑍 ∈ (Base‘𝐷)) |
| 24 | 5, 6, 16, 18, 8, 9 | homfeqval 17709 | . . . 4 ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑋(Hom ‘𝐷)𝑌)) |
| 25 | 11, 24 | eleqtrd 2836 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋(Hom ‘𝐷)𝑌)) |
| 26 | 5, 6, 16, 18, 9, 10 | homfeqval 17709 | . . . 4 ⊢ (𝜑 → (𝑌𝐻𝑍) = (𝑌(Hom ‘𝐷)𝑍)) |
| 27 | 12, 26 | eleqtrd 2836 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝑌(Hom ‘𝐷)𝑍)) |
| 28 | 14, 15, 16, 17, 21, 22, 23, 25, 27 | comfval 17712 | . 2 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉(compf‘𝐷)𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉 ∙ 𝑍)𝐹)) |
| 29 | 3, 13, 28 | 3eqtr3d 2778 | 1 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉 ∙ 𝑍)𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 〈cop 4607 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 Hom chom 17282 compcco 17283 Homf chomf 17678 compfccomf 17679 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-homf 17682 df-comf 17683 |
| This theorem is referenced by: catpropd 17721 cidpropd 17722 oppccomfpropd 17739 monpropd 17750 funcpropd 17915 natpropd 17992 fucpropd 17993 xpcpropd 18220 hofpropd 18279 sectpropdlem 49003 |
| Copyright terms: Public domain | W3C validator |