Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cznrng Structured version   Visualization version   GIF version

Theorem cznrng 48298
Description: The ring constructed from a ℤ/n structure by replacing the (multiplicative) ring operation by a constant operation is a non-unital ring. (Contributed by AV, 17-Feb-2020.)
Hypotheses
Ref Expression
cznrng.y 𝑌 = (ℤ/nℤ‘𝑁)
cznrng.b 𝐵 = (Base‘𝑌)
cznrng.x 𝑋 = (𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩)
cznrng.0 0 = (0g𝑌)
Assertion
Ref Expression
cznrng ((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) → 𝑋 ∈ Rng)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝑁,𝑦   𝑥,𝑋   𝑥,𝑌,𝑦   𝑥, 0 ,𝑦
Allowed substitution hint:   𝑋(𝑦)

Proof of Theorem cznrng
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnn0 12388 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 cznrng.y . . . . . . 7 𝑌 = (ℤ/nℤ‘𝑁)
32zncrng 21482 . . . . . 6 (𝑁 ∈ ℕ0𝑌 ∈ CRing)
41, 3syl 17 . . . . 5 (𝑁 ∈ ℕ → 𝑌 ∈ CRing)
5 crngring 20164 . . . . . 6 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
6 cznrng.b . . . . . . . 8 𝐵 = (Base‘𝑌)
7 cznrng.0 . . . . . . . 8 0 = (0g𝑌)
86, 7ring0cl 20186 . . . . . . 7 (𝑌 ∈ Ring → 0𝐵)
9 eleq1a 2826 . . . . . . 7 ( 0𝐵 → (𝐶 = 0𝐶𝐵))
108, 9syl 17 . . . . . 6 (𝑌 ∈ Ring → (𝐶 = 0𝐶𝐵))
115, 10syl 17 . . . . 5 (𝑌 ∈ CRing → (𝐶 = 0𝐶𝐵))
124, 11syl 17 . . . 4 (𝑁 ∈ ℕ → (𝐶 = 0𝐶𝐵))
1312imp 406 . . 3 ((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) → 𝐶𝐵)
14 cznrng.x . . . . . 6 𝑋 = (𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩)
152, 6, 14cznabel 48297 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐶𝐵) → 𝑋 ∈ Abel)
1615adantlr 715 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) → 𝑋 ∈ Abel)
17 eqid 2731 . . . . . 6 (mulGrp‘𝑋) = (mulGrp‘𝑋)
182, 6, 14cznrnglem 48296 . . . . . 6 𝐵 = (Base‘𝑋)
1917, 18mgpbas 20064 . . . . 5 𝐵 = (Base‘(mulGrp‘𝑋))
2014fveq2i 6825 . . . . . . 7 (mulGrp‘𝑋) = (mulGrp‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))
212fvexi 6836 . . . . . . . 8 𝑌 ∈ V
226fvexi 6836 . . . . . . . . 9 𝐵 ∈ V
2322, 22mpoex 8011 . . . . . . . 8 (𝑥𝐵, 𝑦𝐵𝐶) ∈ V
24 mulridx 17199 . . . . . . . . 9 .r = Slot (.r‘ndx)
2524setsid 17118 . . . . . . . 8 ((𝑌 ∈ V ∧ (𝑥𝐵, 𝑦𝐵𝐶) ∈ V) → (𝑥𝐵, 𝑦𝐵𝐶) = (.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩)))
2621, 23, 25mp2an 692 . . . . . . 7 (𝑥𝐵, 𝑦𝐵𝐶) = (.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))
2720, 26mgpplusg 20063 . . . . . 6 (𝑥𝐵, 𝑦𝐵𝐶) = (+g‘(mulGrp‘𝑋))
2827eqcomi 2740 . . . . 5 (+g‘(mulGrp‘𝑋)) = (𝑥𝐵, 𝑦𝐵𝐶)
29 ne0i 4291 . . . . . 6 (𝐶𝐵𝐵 ≠ ∅)
3029adantl 481 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) → 𝐵 ≠ ∅)
31 simpr 484 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) → 𝐶𝐵)
3219, 28, 30, 31copissgrp 48205 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) → (mulGrp‘𝑋) ∈ Smgrp)
33 oveq1 7353 . . . . . . . . 9 (𝐶 = 0 → (𝐶(+g𝑌)𝐶) = ( 0 (+g𝑌)𝐶))
3433ad3antlr 731 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝐶(+g𝑌)𝐶) = ( 0 (+g𝑌)𝐶))
354, 5syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑌 ∈ Ring)
36 ringmnd 20162 . . . . . . . . . . . . 13 (𝑌 ∈ Ring → 𝑌 ∈ Mnd)
3735, 36syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑌 ∈ Mnd)
3837adantr 480 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) → 𝑌 ∈ Mnd)
3938anim1i 615 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) → (𝑌 ∈ Mnd ∧ 𝐶𝐵))
4039adantr 480 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑌 ∈ Mnd ∧ 𝐶𝐵))
41 eqid 2731 . . . . . . . . . 10 (+g𝑌) = (+g𝑌)
426, 41, 7mndlid 18662 . . . . . . . . 9 ((𝑌 ∈ Mnd ∧ 𝐶𝐵) → ( 0 (+g𝑌)𝐶) = 𝐶)
4340, 42syl 17 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → ( 0 (+g𝑌)𝐶) = 𝐶)
4434, 43eqtrd 2766 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝐶(+g𝑌)𝐶) = 𝐶)
45 eqidd 2732 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑥𝐵, 𝑦𝐵𝐶) = (𝑥𝐵, 𝑦𝐵𝐶))
46 eqidd 2732 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) ∧ (𝑥 = 𝑎𝑦 = 𝑏)) → 𝐶 = 𝐶)
47 simpr1 1195 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → 𝑎𝐵)
48 simpr2 1196 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → 𝑏𝐵)
4931adantr 480 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → 𝐶𝐵)
5045, 46, 47, 48, 49ovmpod 7498 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏) = 𝐶)
51 eqidd 2732 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) ∧ (𝑥 = 𝑎𝑦 = 𝑐)) → 𝐶 = 𝐶)
52 simpr3 1197 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → 𝑐𝐵)
5345, 51, 47, 52, 49ovmpod 7498 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝐶)
5450, 53oveq12d 7364 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏)(+g𝑌)(𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)) = (𝐶(+g𝑌)𝐶))
55 eqidd 2732 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) ∧ (𝑥 = 𝑎𝑦 = (𝑏(+g𝑌)𝑐))) → 𝐶 = 𝐶)
5635ad3antrrr 730 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → 𝑌 ∈ Ring)
576, 41ringacl 20197 . . . . . . . . 9 ((𝑌 ∈ Ring ∧ 𝑏𝐵𝑐𝐵) → (𝑏(+g𝑌)𝑐) ∈ 𝐵)
5856, 48, 52, 57syl3anc 1373 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑏(+g𝑌)𝑐) ∈ 𝐵)
5945, 55, 47, 58, 49ovmpod 7498 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑎(𝑥𝐵, 𝑦𝐵𝐶)(𝑏(+g𝑌)𝑐)) = 𝐶)
6044, 54, 593eqtr4rd 2777 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑎(𝑥𝐵, 𝑦𝐵𝐶)(𝑏(+g𝑌)𝑐)) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏)(+g𝑌)(𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)))
61 eqidd 2732 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) ∧ (𝑥 = 𝑏𝑦 = 𝑐)) → 𝐶 = 𝐶)
6245, 61, 48, 52, 49ovmpod 7498 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑏(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝐶)
6353, 62oveq12d 7364 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)(+g𝑌)(𝑏(𝑥𝐵, 𝑦𝐵𝐶)𝑐)) = (𝐶(+g𝑌)𝐶))
64 eqidd 2732 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) ∧ (𝑥 = (𝑎(+g𝑌)𝑏) ∧ 𝑦 = 𝑐)) → 𝐶 = 𝐶)
656, 41ringacl 20197 . . . . . . . . 9 ((𝑌 ∈ Ring ∧ 𝑎𝐵𝑏𝐵) → (𝑎(+g𝑌)𝑏) ∈ 𝐵)
6656, 47, 48, 65syl3anc 1373 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑎(+g𝑌)𝑏) ∈ 𝐵)
6745, 64, 66, 52, 49ovmpod 7498 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → ((𝑎(+g𝑌)𝑏)(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝐶)
6844, 63, 673eqtr4rd 2777 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → ((𝑎(+g𝑌)𝑏)(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)(+g𝑌)(𝑏(𝑥𝐵, 𝑦𝐵𝐶)𝑐)))
6960, 68jca 511 . . . . 5 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)(𝑏(+g𝑌)𝑐)) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏)(+g𝑌)(𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)) ∧ ((𝑎(+g𝑌)𝑏)(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)(+g𝑌)(𝑏(𝑥𝐵, 𝑦𝐵𝐶)𝑐))))
7069ralrimivvva 3178 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) → ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)(𝑏(+g𝑌)𝑐)) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏)(+g𝑌)(𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)) ∧ ((𝑎(+g𝑌)𝑏)(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)(+g𝑌)(𝑏(𝑥𝐵, 𝑦𝐵𝐶)𝑐))))
7116, 32, 703jca 1128 . . 3 (((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) → (𝑋 ∈ Abel ∧ (mulGrp‘𝑋) ∈ Smgrp ∧ ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)(𝑏(+g𝑌)𝑐)) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏)(+g𝑌)(𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)) ∧ ((𝑎(+g𝑌)𝑏)(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)(+g𝑌)(𝑏(𝑥𝐵, 𝑦𝐵𝐶)𝑐)))))
7213, 71mpdan 687 . 2 ((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) → (𝑋 ∈ Abel ∧ (mulGrp‘𝑋) ∈ Smgrp ∧ ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)(𝑏(+g𝑌)𝑐)) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏)(+g𝑌)(𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)) ∧ ((𝑎(+g𝑌)𝑏)(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)(+g𝑌)(𝑏(𝑥𝐵, 𝑦𝐵𝐶)𝑐)))))
73 plusgid 17188 . . . . 5 +g = Slot (+g‘ndx)
74 plusgndxnmulrndx 17201 . . . . 5 (+g‘ndx) ≠ (.r‘ndx)
7573, 74setsnid 17119 . . . 4 (+g𝑌) = (+g‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))
7614fveq2i 6825 . . . 4 (+g𝑋) = (+g‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))
7775, 76eqtr4i 2757 . . 3 (+g𝑌) = (+g𝑋)
7814eqcomi 2740 . . . . 5 (𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩) = 𝑋
7978fveq2i 6825 . . . 4 (.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩)) = (.r𝑋)
8026, 79eqtri 2754 . . 3 (𝑥𝐵, 𝑦𝐵𝐶) = (.r𝑋)
8118, 17, 77, 80isrng 20073 . 2 (𝑋 ∈ Rng ↔ (𝑋 ∈ Abel ∧ (mulGrp‘𝑋) ∈ Smgrp ∧ ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)(𝑏(+g𝑌)𝑐)) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏)(+g𝑌)(𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)) ∧ ((𝑎(+g𝑌)𝑏)(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)(+g𝑌)(𝑏(𝑥𝐵, 𝑦𝐵𝐶)𝑐)))))
8272, 81sylibr 234 1 ((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) → 𝑋 ∈ Rng)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  Vcvv 3436  c0 4283  cop 4582  cfv 6481  (class class class)co 7346  cmpo 7348  cn 12125  0cn0 12381   sSet csts 17074  ndxcnx 17104  Basecbs 17120  +gcplusg 17161  .rcmulr 17162  0gc0g 17343  Smgrpcsgrp 18626  Mndcmnd 18642  Abelcabl 19694  mulGrpcmgp 20059  Rngcrng 20071  Ringcrg 20152  CRingccrg 20153  ℤ/nczn 21440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-ec 8624  df-qs 8628  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-0g 17345  df-imas 17412  df-qus 17413  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-nsg 19037  df-eqg 19038  df-cmn 19695  df-abl 19696  df-mgp 20060  df-rng 20072  df-ur 20101  df-ring 20154  df-cring 20155  df-oppr 20256  df-subrng 20462  df-subrg 20486  df-lmod 20796  df-lss 20866  df-lsp 20906  df-sra 21108  df-rgmod 21109  df-lidl 21146  df-rsp 21147  df-2idl 21188  df-cnfld 21293  df-zring 21385  df-zn 21444
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator