Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cznrng Structured version   Visualization version   GIF version

Theorem cznrng 46755
Description: The ring constructed from a ℤ/n structure by replacing the (multiplicative) ring operation by a constant operation is a non-unital ring. (Contributed by AV, 17-Feb-2020.)
Hypotheses
Ref Expression
cznrng.y 𝑌 = (ℤ/nℤ‘𝑁)
cznrng.b 𝐵 = (Base‘𝑌)
cznrng.x 𝑋 = (𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩)
cznrng.0 0 = (0g𝑌)
Assertion
Ref Expression
cznrng ((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) → 𝑋 ∈ Rng)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝑁,𝑦   𝑥,𝑋   𝑥,𝑌,𝑦   𝑥, 0 ,𝑦
Allowed substitution hint:   𝑋(𝑦)

Proof of Theorem cznrng
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnn0 12475 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 cznrng.y . . . . . . 7 𝑌 = (ℤ/nℤ‘𝑁)
32zncrng 21084 . . . . . 6 (𝑁 ∈ ℕ0𝑌 ∈ CRing)
41, 3syl 17 . . . . 5 (𝑁 ∈ ℕ → 𝑌 ∈ CRing)
5 crngring 20059 . . . . . 6 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
6 cznrng.b . . . . . . . 8 𝐵 = (Base‘𝑌)
7 cznrng.0 . . . . . . . 8 0 = (0g𝑌)
86, 7ring0cl 20074 . . . . . . 7 (𝑌 ∈ Ring → 0𝐵)
9 eleq1a 2829 . . . . . . 7 ( 0𝐵 → (𝐶 = 0𝐶𝐵))
108, 9syl 17 . . . . . 6 (𝑌 ∈ Ring → (𝐶 = 0𝐶𝐵))
115, 10syl 17 . . . . 5 (𝑌 ∈ CRing → (𝐶 = 0𝐶𝐵))
124, 11syl 17 . . . 4 (𝑁 ∈ ℕ → (𝐶 = 0𝐶𝐵))
1312imp 408 . . 3 ((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) → 𝐶𝐵)
14 cznrng.x . . . . . 6 𝑋 = (𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩)
152, 6, 14cznabel 46754 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐶𝐵) → 𝑋 ∈ Abel)
1615adantlr 714 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) → 𝑋 ∈ Abel)
17 eqid 2733 . . . . . 6 (mulGrp‘𝑋) = (mulGrp‘𝑋)
182, 6, 14cznrnglem 46753 . . . . . 6 𝐵 = (Base‘𝑋)
1917, 18mgpbas 19985 . . . . 5 𝐵 = (Base‘(mulGrp‘𝑋))
2014fveq2i 6891 . . . . . . 7 (mulGrp‘𝑋) = (mulGrp‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))
212fvexi 6902 . . . . . . . 8 𝑌 ∈ V
226fvexi 6902 . . . . . . . . 9 𝐵 ∈ V
2322, 22mpoex 8061 . . . . . . . 8 (𝑥𝐵, 𝑦𝐵𝐶) ∈ V
24 mulridx 17235 . . . . . . . . 9 .r = Slot (.r‘ndx)
2524setsid 17137 . . . . . . . 8 ((𝑌 ∈ V ∧ (𝑥𝐵, 𝑦𝐵𝐶) ∈ V) → (𝑥𝐵, 𝑦𝐵𝐶) = (.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩)))
2621, 23, 25mp2an 691 . . . . . . 7 (𝑥𝐵, 𝑦𝐵𝐶) = (.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))
2720, 26mgpplusg 19983 . . . . . 6 (𝑥𝐵, 𝑦𝐵𝐶) = (+g‘(mulGrp‘𝑋))
2827eqcomi 2742 . . . . 5 (+g‘(mulGrp‘𝑋)) = (𝑥𝐵, 𝑦𝐵𝐶)
29 ne0i 4333 . . . . . 6 (𝐶𝐵𝐵 ≠ ∅)
3029adantl 483 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) → 𝐵 ≠ ∅)
31 simpr 486 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) → 𝐶𝐵)
3219, 28, 30, 31copissgrp 46513 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) → (mulGrp‘𝑋) ∈ Smgrp)
33 oveq1 7411 . . . . . . . . 9 (𝐶 = 0 → (𝐶(+g𝑌)𝐶) = ( 0 (+g𝑌)𝐶))
3433ad3antlr 730 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝐶(+g𝑌)𝐶) = ( 0 (+g𝑌)𝐶))
354, 5syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑌 ∈ Ring)
36 ringmnd 20057 . . . . . . . . . . . . 13 (𝑌 ∈ Ring → 𝑌 ∈ Mnd)
3735, 36syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑌 ∈ Mnd)
3837adantr 482 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) → 𝑌 ∈ Mnd)
3938anim1i 616 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) → (𝑌 ∈ Mnd ∧ 𝐶𝐵))
4039adantr 482 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑌 ∈ Mnd ∧ 𝐶𝐵))
41 eqid 2733 . . . . . . . . . 10 (+g𝑌) = (+g𝑌)
426, 41, 7mndlid 18641 . . . . . . . . 9 ((𝑌 ∈ Mnd ∧ 𝐶𝐵) → ( 0 (+g𝑌)𝐶) = 𝐶)
4340, 42syl 17 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → ( 0 (+g𝑌)𝐶) = 𝐶)
4434, 43eqtrd 2773 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝐶(+g𝑌)𝐶) = 𝐶)
45 eqidd 2734 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑥𝐵, 𝑦𝐵𝐶) = (𝑥𝐵, 𝑦𝐵𝐶))
46 eqidd 2734 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) ∧ (𝑥 = 𝑎𝑦 = 𝑏)) → 𝐶 = 𝐶)
47 simpr1 1195 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → 𝑎𝐵)
48 simpr2 1196 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → 𝑏𝐵)
4931adantr 482 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → 𝐶𝐵)
5045, 46, 47, 48, 49ovmpod 7555 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏) = 𝐶)
51 eqidd 2734 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) ∧ (𝑥 = 𝑎𝑦 = 𝑐)) → 𝐶 = 𝐶)
52 simpr3 1197 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → 𝑐𝐵)
5345, 51, 47, 52, 49ovmpod 7555 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝐶)
5450, 53oveq12d 7422 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏)(+g𝑌)(𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)) = (𝐶(+g𝑌)𝐶))
55 eqidd 2734 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) ∧ (𝑥 = 𝑎𝑦 = (𝑏(+g𝑌)𝑐))) → 𝐶 = 𝐶)
5635ad3antrrr 729 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → 𝑌 ∈ Ring)
576, 41ringacl 20085 . . . . . . . . 9 ((𝑌 ∈ Ring ∧ 𝑏𝐵𝑐𝐵) → (𝑏(+g𝑌)𝑐) ∈ 𝐵)
5856, 48, 52, 57syl3anc 1372 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑏(+g𝑌)𝑐) ∈ 𝐵)
5945, 55, 47, 58, 49ovmpod 7555 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑎(𝑥𝐵, 𝑦𝐵𝐶)(𝑏(+g𝑌)𝑐)) = 𝐶)
6044, 54, 593eqtr4rd 2784 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑎(𝑥𝐵, 𝑦𝐵𝐶)(𝑏(+g𝑌)𝑐)) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏)(+g𝑌)(𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)))
61 eqidd 2734 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) ∧ (𝑥 = 𝑏𝑦 = 𝑐)) → 𝐶 = 𝐶)
6245, 61, 48, 52, 49ovmpod 7555 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑏(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝐶)
6353, 62oveq12d 7422 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)(+g𝑌)(𝑏(𝑥𝐵, 𝑦𝐵𝐶)𝑐)) = (𝐶(+g𝑌)𝐶))
64 eqidd 2734 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) ∧ (𝑥 = (𝑎(+g𝑌)𝑏) ∧ 𝑦 = 𝑐)) → 𝐶 = 𝐶)
656, 41ringacl 20085 . . . . . . . . 9 ((𝑌 ∈ Ring ∧ 𝑎𝐵𝑏𝐵) → (𝑎(+g𝑌)𝑏) ∈ 𝐵)
6656, 47, 48, 65syl3anc 1372 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑎(+g𝑌)𝑏) ∈ 𝐵)
6745, 64, 66, 52, 49ovmpod 7555 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → ((𝑎(+g𝑌)𝑏)(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝐶)
6844, 63, 673eqtr4rd 2784 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → ((𝑎(+g𝑌)𝑏)(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)(+g𝑌)(𝑏(𝑥𝐵, 𝑦𝐵𝐶)𝑐)))
6960, 68jca 513 . . . . 5 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)(𝑏(+g𝑌)𝑐)) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏)(+g𝑌)(𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)) ∧ ((𝑎(+g𝑌)𝑏)(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)(+g𝑌)(𝑏(𝑥𝐵, 𝑦𝐵𝐶)𝑐))))
7069ralrimivvva 3204 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) → ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)(𝑏(+g𝑌)𝑐)) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏)(+g𝑌)(𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)) ∧ ((𝑎(+g𝑌)𝑏)(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)(+g𝑌)(𝑏(𝑥𝐵, 𝑦𝐵𝐶)𝑐))))
7116, 32, 703jca 1129 . . 3 (((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) → (𝑋 ∈ Abel ∧ (mulGrp‘𝑋) ∈ Smgrp ∧ ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)(𝑏(+g𝑌)𝑐)) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏)(+g𝑌)(𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)) ∧ ((𝑎(+g𝑌)𝑏)(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)(+g𝑌)(𝑏(𝑥𝐵, 𝑦𝐵𝐶)𝑐)))))
7213, 71mpdan 686 . 2 ((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) → (𝑋 ∈ Abel ∧ (mulGrp‘𝑋) ∈ Smgrp ∧ ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)(𝑏(+g𝑌)𝑐)) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏)(+g𝑌)(𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)) ∧ ((𝑎(+g𝑌)𝑏)(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)(+g𝑌)(𝑏(𝑥𝐵, 𝑦𝐵𝐶)𝑐)))))
73 plusgid 17220 . . . . 5 +g = Slot (+g‘ndx)
74 plusgndxnmulrndx 17238 . . . . 5 (+g‘ndx) ≠ (.r‘ndx)
7573, 74setsnid 17138 . . . 4 (+g𝑌) = (+g‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))
7614fveq2i 6891 . . . 4 (+g𝑋) = (+g‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))
7775, 76eqtr4i 2764 . . 3 (+g𝑌) = (+g𝑋)
7814eqcomi 2742 . . . . 5 (𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩) = 𝑋
7978fveq2i 6891 . . . 4 (.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩)) = (.r𝑋)
8026, 79eqtri 2761 . . 3 (𝑥𝐵, 𝑦𝐵𝐶) = (.r𝑋)
8118, 17, 77, 80isrng 46585 . 2 (𝑋 ∈ Rng ↔ (𝑋 ∈ Abel ∧ (mulGrp‘𝑋) ∈ Smgrp ∧ ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)(𝑏(+g𝑌)𝑐)) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏)(+g𝑌)(𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)) ∧ ((𝑎(+g𝑌)𝑏)(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)(+g𝑌)(𝑏(𝑥𝐵, 𝑦𝐵𝐶)𝑐)))))
8272, 81sylibr 233 1 ((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) → 𝑋 ∈ Rng)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2941  wral 3062  Vcvv 3475  c0 4321  cop 4633  cfv 6540  (class class class)co 7404  cmpo 7406  cn 12208  0cn0 12468   sSet csts 17092  ndxcnx 17122  Basecbs 17140  +gcplusg 17193  .rcmulr 17194  0gc0g 17381  Smgrpcsgrp 18605  Mndcmnd 18621  Abelcabl 19642  mulGrpcmgp 19979  Ringcrg 20047  CRingccrg 20048  ℤ/nczn 21036  Rngcrng 46583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-addf 11185  ax-mulf 11186
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7851  df-1st 7970  df-2nd 7971  df-tpos 8206  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-ec 8701  df-qs 8705  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-starv 17208  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-0g 17383  df-imas 17450  df-qus 17451  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818  df-minusg 18819  df-sbg 18820  df-subg 18997  df-nsg 18998  df-eqg 18999  df-cmn 19643  df-abl 19644  df-mgp 19980  df-ur 19997  df-ring 20049  df-cring 20050  df-oppr 20139  df-subrg 20349  df-lmod 20461  df-lss 20531  df-lsp 20571  df-sra 20773  df-rgmod 20774  df-lidl 20775  df-rsp 20776  df-2idl 20844  df-cnfld 20930  df-zring 21003  df-zn 21040  df-rng 46584
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator