Step | Hyp | Ref
| Expression |
1 | | nnnn0 12240 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
2 | | cznrng.y |
. . . . . . 7
⊢ 𝑌 =
(ℤ/nℤ‘𝑁) |
3 | 2 | zncrng 20752 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ 𝑌 ∈
CRing) |
4 | 1, 3 | syl 17 |
. . . . 5
⊢ (𝑁 ∈ ℕ → 𝑌 ∈ CRing) |
5 | | crngring 19795 |
. . . . . 6
⊢ (𝑌 ∈ CRing → 𝑌 ∈ Ring) |
6 | | cznrng.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑌) |
7 | | cznrng.0 |
. . . . . . . 8
⊢ 0 =
(0g‘𝑌) |
8 | 6, 7 | ring0cl 19808 |
. . . . . . 7
⊢ (𝑌 ∈ Ring → 0 ∈ 𝐵) |
9 | | eleq1a 2834 |
. . . . . . 7
⊢ ( 0 ∈ 𝐵 → (𝐶 = 0 → 𝐶 ∈ 𝐵)) |
10 | 8, 9 | syl 17 |
. . . . . 6
⊢ (𝑌 ∈ Ring → (𝐶 = 0 → 𝐶 ∈ 𝐵)) |
11 | 5, 10 | syl 17 |
. . . . 5
⊢ (𝑌 ∈ CRing → (𝐶 = 0 → 𝐶 ∈ 𝐵)) |
12 | 4, 11 | syl 17 |
. . . 4
⊢ (𝑁 ∈ ℕ → (𝐶 = 0 → 𝐶 ∈ 𝐵)) |
13 | 12 | imp 407 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) → 𝐶 ∈ 𝐵) |
14 | | cznrng.x |
. . . . . 6
⊢ 𝑋 = (𝑌 sSet 〈(.r‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉) |
15 | 2, 6, 14 | cznabel 45512 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐶 ∈ 𝐵) → 𝑋 ∈ Abel) |
16 | 15 | adantlr 712 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) → 𝑋 ∈ Abel) |
17 | | eqid 2738 |
. . . . . 6
⊢
(mulGrp‘𝑋) =
(mulGrp‘𝑋) |
18 | 2, 6, 14 | cznrnglem 45511 |
. . . . . 6
⊢ 𝐵 = (Base‘𝑋) |
19 | 17, 18 | mgpbas 19726 |
. . . . 5
⊢ 𝐵 =
(Base‘(mulGrp‘𝑋)) |
20 | 14 | fveq2i 6777 |
. . . . . . 7
⊢
(mulGrp‘𝑋) =
(mulGrp‘(𝑌 sSet
〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉)) |
21 | 2 | fvexi 6788 |
. . . . . . . 8
⊢ 𝑌 ∈ V |
22 | 6 | fvexi 6788 |
. . . . . . . . 9
⊢ 𝐵 ∈ V |
23 | 22, 22 | mpoex 7920 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
24 | | mulrid 17004 |
. . . . . . . . 9
⊢
.r = Slot (.r‘ndx) |
25 | 24 | setsid 16909 |
. . . . . . . 8
⊢ ((𝑌 ∈ V ∧ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) = (.r‘(𝑌 sSet 〈(.r‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉))) |
26 | 21, 23, 25 | mp2an 689 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) = (.r‘(𝑌 sSet 〈(.r‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉)) |
27 | 20, 26 | mgpplusg 19724 |
. . . . . 6
⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) = (+g‘(mulGrp‘𝑋)) |
28 | 27 | eqcomi 2747 |
. . . . 5
⊢
(+g‘(mulGrp‘𝑋)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) |
29 | | ne0i 4268 |
. . . . . 6
⊢ (𝐶 ∈ 𝐵 → 𝐵 ≠ ∅) |
30 | 29 | adantl 482 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) → 𝐵 ≠ ∅) |
31 | | simpr 485 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) → 𝐶 ∈ 𝐵) |
32 | 19, 28, 30, 31 | copissgrp 45362 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) → (mulGrp‘𝑋) ∈ Smgrp) |
33 | | oveq1 7282 |
. . . . . . . . 9
⊢ (𝐶 = 0 → (𝐶(+g‘𝑌)𝐶) = ( 0 (+g‘𝑌)𝐶)) |
34 | 33 | ad3antlr 728 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → (𝐶(+g‘𝑌)𝐶) = ( 0 (+g‘𝑌)𝐶)) |
35 | 4, 5 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ → 𝑌 ∈ Ring) |
36 | | ringmnd 19793 |
. . . . . . . . . . . . 13
⊢ (𝑌 ∈ Ring → 𝑌 ∈ Mnd) |
37 | 35, 36 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → 𝑌 ∈ Mnd) |
38 | 37 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) → 𝑌 ∈ Mnd) |
39 | 38 | anim1i 615 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) → (𝑌 ∈ Mnd ∧ 𝐶 ∈ 𝐵)) |
40 | 39 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → (𝑌 ∈ Mnd ∧ 𝐶 ∈ 𝐵)) |
41 | | eqid 2738 |
. . . . . . . . . 10
⊢
(+g‘𝑌) = (+g‘𝑌) |
42 | 6, 41, 7 | mndlid 18405 |
. . . . . . . . 9
⊢ ((𝑌 ∈ Mnd ∧ 𝐶 ∈ 𝐵) → ( 0 (+g‘𝑌)𝐶) = 𝐶) |
43 | 40, 42 | syl 17 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → ( 0 (+g‘𝑌)𝐶) = 𝐶) |
44 | 34, 43 | eqtrd 2778 |
. . . . . . 7
⊢ ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → (𝐶(+g‘𝑌)𝐶) = 𝐶) |
45 | | eqidd 2739 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)) |
46 | | eqidd 2739 |
. . . . . . . . 9
⊢
(((((𝑁 ∈
ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑥 = 𝑎 ∧ 𝑦 = 𝑏)) → 𝐶 = 𝐶) |
47 | | simpr1 1193 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → 𝑎 ∈ 𝐵) |
48 | | simpr2 1194 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → 𝑏 ∈ 𝐵) |
49 | 31 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → 𝐶 ∈ 𝐵) |
50 | 45, 46, 47, 48, 49 | ovmpod 7425 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑏) = 𝐶) |
51 | | eqidd 2739 |
. . . . . . . . 9
⊢
(((((𝑁 ∈
ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑥 = 𝑎 ∧ 𝑦 = 𝑐)) → 𝐶 = 𝐶) |
52 | | simpr3 1195 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → 𝑐 ∈ 𝐵) |
53 | 45, 51, 47, 52, 49 | ovmpod 7425 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝐶) |
54 | 50, 53 | oveq12d 7293 |
. . . . . . 7
⊢ ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → ((𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑏)(+g‘𝑌)(𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐)) = (𝐶(+g‘𝑌)𝐶)) |
55 | | eqidd 2739 |
. . . . . . . 8
⊢
(((((𝑁 ∈
ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑥 = 𝑎 ∧ 𝑦 = (𝑏(+g‘𝑌)𝑐))) → 𝐶 = 𝐶) |
56 | 35 | ad3antrrr 727 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → 𝑌 ∈ Ring) |
57 | 6, 41 | ringacl 19817 |
. . . . . . . . 9
⊢ ((𝑌 ∈ Ring ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) → (𝑏(+g‘𝑌)𝑐) ∈ 𝐵) |
58 | 56, 48, 52, 57 | syl3anc 1370 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → (𝑏(+g‘𝑌)𝑐) ∈ 𝐵) |
59 | 45, 55, 47, 58, 49 | ovmpod 7425 |
. . . . . . 7
⊢ ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)(𝑏(+g‘𝑌)𝑐)) = 𝐶) |
60 | 44, 54, 59 | 3eqtr4rd 2789 |
. . . . . 6
⊢ ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)(𝑏(+g‘𝑌)𝑐)) = ((𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑏)(+g‘𝑌)(𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐))) |
61 | | eqidd 2739 |
. . . . . . . . 9
⊢
(((((𝑁 ∈
ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑥 = 𝑏 ∧ 𝑦 = 𝑐)) → 𝐶 = 𝐶) |
62 | 45, 61, 48, 52, 49 | ovmpod 7425 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → (𝑏(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝐶) |
63 | 53, 62 | oveq12d 7293 |
. . . . . . 7
⊢ ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → ((𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐)(+g‘𝑌)(𝑏(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐)) = (𝐶(+g‘𝑌)𝐶)) |
64 | | eqidd 2739 |
. . . . . . . 8
⊢
(((((𝑁 ∈
ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) ∧ (𝑥 = (𝑎(+g‘𝑌)𝑏) ∧ 𝑦 = 𝑐)) → 𝐶 = 𝐶) |
65 | 6, 41 | ringacl 19817 |
. . . . . . . . 9
⊢ ((𝑌 ∈ Ring ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑎(+g‘𝑌)𝑏) ∈ 𝐵) |
66 | 56, 47, 48, 65 | syl3anc 1370 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → (𝑎(+g‘𝑌)𝑏) ∈ 𝐵) |
67 | 45, 64, 66, 52, 49 | ovmpod 7425 |
. . . . . . 7
⊢ ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → ((𝑎(+g‘𝑌)𝑏)(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝐶) |
68 | 44, 63, 67 | 3eqtr4rd 2789 |
. . . . . 6
⊢ ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → ((𝑎(+g‘𝑌)𝑏)(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = ((𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐)(+g‘𝑌)(𝑏(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐))) |
69 | 60, 68 | jca 512 |
. . . . 5
⊢ ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → ((𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)(𝑏(+g‘𝑌)𝑐)) = ((𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑏)(+g‘𝑌)(𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐)) ∧ ((𝑎(+g‘𝑌)𝑏)(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = ((𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐)(+g‘𝑌)(𝑏(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐)))) |
70 | 69 | ralrimivvva 3127 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 ((𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)(𝑏(+g‘𝑌)𝑐)) = ((𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑏)(+g‘𝑌)(𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐)) ∧ ((𝑎(+g‘𝑌)𝑏)(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = ((𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐)(+g‘𝑌)(𝑏(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐)))) |
71 | 16, 32, 70 | 3jca 1127 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶 ∈ 𝐵) → (𝑋 ∈ Abel ∧ (mulGrp‘𝑋) ∈ Smgrp ∧
∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 ((𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)(𝑏(+g‘𝑌)𝑐)) = ((𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑏)(+g‘𝑌)(𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐)) ∧ ((𝑎(+g‘𝑌)𝑏)(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = ((𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐)(+g‘𝑌)(𝑏(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐))))) |
72 | 13, 71 | mpdan 684 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) → (𝑋 ∈ Abel ∧
(mulGrp‘𝑋) ∈
Smgrp ∧ ∀𝑎
∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 ((𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)(𝑏(+g‘𝑌)𝑐)) = ((𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑏)(+g‘𝑌)(𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐)) ∧ ((𝑎(+g‘𝑌)𝑏)(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = ((𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐)(+g‘𝑌)(𝑏(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐))))) |
73 | | plusgid 16989 |
. . . . 5
⊢
+g = Slot (+g‘ndx) |
74 | | plusgndxnmulrndx 17007 |
. . . . 5
⊢
(+g‘ndx) ≠
(.r‘ndx) |
75 | 73, 74 | setsnid 16910 |
. . . 4
⊢
(+g‘𝑌) = (+g‘(𝑌 sSet 〈(.r‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉)) |
76 | 14 | fveq2i 6777 |
. . . 4
⊢
(+g‘𝑋) = (+g‘(𝑌 sSet 〈(.r‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉)) |
77 | 75, 76 | eqtr4i 2769 |
. . 3
⊢
(+g‘𝑌) = (+g‘𝑋) |
78 | 14 | eqcomi 2747 |
. . . . 5
⊢ (𝑌 sSet
〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉) = 𝑋 |
79 | 78 | fveq2i 6777 |
. . . 4
⊢
(.r‘(𝑌 sSet 〈(.r‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉)) = (.r‘𝑋) |
80 | 26, 79 | eqtri 2766 |
. . 3
⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) = (.r‘𝑋) |
81 | 18, 17, 77, 80 | isrng 45434 |
. 2
⊢ (𝑋 ∈ Rng ↔ (𝑋 ∈ Abel ∧
(mulGrp‘𝑋) ∈
Smgrp ∧ ∀𝑎
∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 ((𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)(𝑏(+g‘𝑌)𝑐)) = ((𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑏)(+g‘𝑌)(𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐)) ∧ ((𝑎(+g‘𝑌)𝑏)(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = ((𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐)(+g‘𝑌)(𝑏(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐))))) |
82 | 72, 81 | sylibr 233 |
1
⊢ ((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) → 𝑋 ∈ Rng) |