Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cznrng Structured version   Visualization version   GIF version

Theorem cznrng 43530
Description: The ring constructed from a ℤ/n structure by replacing the (multiplicative) ring operation by a constant operation is a non-unital ring. (Contributed by AV, 17-Feb-2020.)
Hypotheses
Ref Expression
cznrng.y 𝑌 = (ℤ/nℤ‘𝑁)
cznrng.b 𝐵 = (Base‘𝑌)
cznrng.x 𝑋 = (𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩)
cznrng.0 0 = (0g𝑌)
Assertion
Ref Expression
cznrng ((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) → 𝑋 ∈ Rng)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝑁,𝑦   𝑥,𝑋   𝑥,𝑌,𝑦   𝑥, 0 ,𝑦
Allowed substitution hint:   𝑋(𝑦)

Proof of Theorem cznrng
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnn0 11708 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 cznrng.y . . . . . . 7 𝑌 = (ℤ/nℤ‘𝑁)
32zncrng 20383 . . . . . 6 (𝑁 ∈ ℕ0𝑌 ∈ CRing)
41, 3syl 17 . . . . 5 (𝑁 ∈ ℕ → 𝑌 ∈ CRing)
5 crngring 19021 . . . . . 6 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
6 cznrng.b . . . . . . . 8 𝐵 = (Base‘𝑌)
7 cznrng.0 . . . . . . . 8 0 = (0g𝑌)
86, 7ring0cl 19032 . . . . . . 7 (𝑌 ∈ Ring → 0𝐵)
9 eleq1a 2855 . . . . . . 7 ( 0𝐵 → (𝐶 = 0𝐶𝐵))
108, 9syl 17 . . . . . 6 (𝑌 ∈ Ring → (𝐶 = 0𝐶𝐵))
115, 10syl 17 . . . . 5 (𝑌 ∈ CRing → (𝐶 = 0𝐶𝐵))
124, 11syl 17 . . . 4 (𝑁 ∈ ℕ → (𝐶 = 0𝐶𝐵))
1312imp 398 . . 3 ((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) → 𝐶𝐵)
14 cznrng.x . . . . . 6 𝑋 = (𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩)
152, 6, 14cznabel 43529 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐶𝐵) → 𝑋 ∈ Abel)
1615adantlr 702 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) → 𝑋 ∈ Abel)
17 eqid 2772 . . . . . 6 (mulGrp‘𝑋) = (mulGrp‘𝑋)
182, 6, 14cznrnglem 43528 . . . . . 6 𝐵 = (Base‘𝑋)
1917, 18mgpbas 18958 . . . . 5 𝐵 = (Base‘(mulGrp‘𝑋))
2014fveq2i 6496 . . . . . . 7 (mulGrp‘𝑋) = (mulGrp‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))
212fvexi 6507 . . . . . . . 8 𝑌 ∈ V
226fvexi 6507 . . . . . . . . 9 𝐵 ∈ V
2322, 22mpoex 7578 . . . . . . . 8 (𝑥𝐵, 𝑦𝐵𝐶) ∈ V
24 mulrid 16462 . . . . . . . . 9 .r = Slot (.r‘ndx)
2524setsid 16384 . . . . . . . 8 ((𝑌 ∈ V ∧ (𝑥𝐵, 𝑦𝐵𝐶) ∈ V) → (𝑥𝐵, 𝑦𝐵𝐶) = (.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩)))
2621, 23, 25mp2an 679 . . . . . . 7 (𝑥𝐵, 𝑦𝐵𝐶) = (.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))
2720, 26mgpplusg 18956 . . . . . 6 (𝑥𝐵, 𝑦𝐵𝐶) = (+g‘(mulGrp‘𝑋))
2827eqcomi 2781 . . . . 5 (+g‘(mulGrp‘𝑋)) = (𝑥𝐵, 𝑦𝐵𝐶)
29 ne0i 4181 . . . . . 6 (𝐶𝐵𝐵 ≠ ∅)
3029adantl 474 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) → 𝐵 ≠ ∅)
31 simpr 477 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) → 𝐶𝐵)
3219, 28, 30, 31copissgrp 43383 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) → (mulGrp‘𝑋) ∈ SGrp)
33 oveq1 6977 . . . . . . . . 9 (𝐶 = 0 → (𝐶(+g𝑌)𝐶) = ( 0 (+g𝑌)𝐶))
3433ad3antlr 718 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝐶(+g𝑌)𝐶) = ( 0 (+g𝑌)𝐶))
354, 5syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑌 ∈ Ring)
36 ringmnd 19019 . . . . . . . . . . . . 13 (𝑌 ∈ Ring → 𝑌 ∈ Mnd)
3735, 36syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑌 ∈ Mnd)
3837adantr 473 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) → 𝑌 ∈ Mnd)
3938anim1i 605 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) → (𝑌 ∈ Mnd ∧ 𝐶𝐵))
4039adantr 473 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑌 ∈ Mnd ∧ 𝐶𝐵))
41 eqid 2772 . . . . . . . . . 10 (+g𝑌) = (+g𝑌)
426, 41, 7mndlid 17769 . . . . . . . . 9 ((𝑌 ∈ Mnd ∧ 𝐶𝐵) → ( 0 (+g𝑌)𝐶) = 𝐶)
4340, 42syl 17 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → ( 0 (+g𝑌)𝐶) = 𝐶)
4434, 43eqtrd 2808 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝐶(+g𝑌)𝐶) = 𝐶)
45 eqidd 2773 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑥𝐵, 𝑦𝐵𝐶) = (𝑥𝐵, 𝑦𝐵𝐶))
46 eqidd 2773 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) ∧ (𝑥 = 𝑎𝑦 = 𝑏)) → 𝐶 = 𝐶)
47 simpr1 1174 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → 𝑎𝐵)
48 simpr2 1175 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → 𝑏𝐵)
4931adantr 473 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → 𝐶𝐵)
5045, 46, 47, 48, 49ovmpod 7112 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏) = 𝐶)
51 eqidd 2773 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) ∧ (𝑥 = 𝑎𝑦 = 𝑐)) → 𝐶 = 𝐶)
52 simpr3 1176 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → 𝑐𝐵)
5345, 51, 47, 52, 49ovmpod 7112 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝐶)
5450, 53oveq12d 6988 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏)(+g𝑌)(𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)) = (𝐶(+g𝑌)𝐶))
55 eqidd 2773 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) ∧ (𝑥 = 𝑎𝑦 = (𝑏(+g𝑌)𝑐))) → 𝐶 = 𝐶)
5635ad3antrrr 717 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → 𝑌 ∈ Ring)
576, 41ringacl 19041 . . . . . . . . 9 ((𝑌 ∈ Ring ∧ 𝑏𝐵𝑐𝐵) → (𝑏(+g𝑌)𝑐) ∈ 𝐵)
5856, 48, 52, 57syl3anc 1351 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑏(+g𝑌)𝑐) ∈ 𝐵)
5945, 55, 47, 58, 49ovmpod 7112 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑎(𝑥𝐵, 𝑦𝐵𝐶)(𝑏(+g𝑌)𝑐)) = 𝐶)
6044, 54, 593eqtr4rd 2819 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑎(𝑥𝐵, 𝑦𝐵𝐶)(𝑏(+g𝑌)𝑐)) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏)(+g𝑌)(𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)))
61 eqidd 2773 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) ∧ (𝑥 = 𝑏𝑦 = 𝑐)) → 𝐶 = 𝐶)
6245, 61, 48, 52, 49ovmpod 7112 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑏(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝐶)
6353, 62oveq12d 6988 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)(+g𝑌)(𝑏(𝑥𝐵, 𝑦𝐵𝐶)𝑐)) = (𝐶(+g𝑌)𝐶))
64 eqidd 2773 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) ∧ (𝑥 = (𝑎(+g𝑌)𝑏) ∧ 𝑦 = 𝑐)) → 𝐶 = 𝐶)
656, 41ringacl 19041 . . . . . . . . 9 ((𝑌 ∈ Ring ∧ 𝑎𝐵𝑏𝐵) → (𝑎(+g𝑌)𝑏) ∈ 𝐵)
6656, 47, 48, 65syl3anc 1351 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑎(+g𝑌)𝑏) ∈ 𝐵)
6745, 64, 66, 52, 49ovmpod 7112 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → ((𝑎(+g𝑌)𝑏)(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝐶)
6844, 63, 673eqtr4rd 2819 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → ((𝑎(+g𝑌)𝑏)(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)(+g𝑌)(𝑏(𝑥𝐵, 𝑦𝐵𝐶)𝑐)))
6960, 68jca 504 . . . . 5 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)(𝑏(+g𝑌)𝑐)) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏)(+g𝑌)(𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)) ∧ ((𝑎(+g𝑌)𝑏)(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)(+g𝑌)(𝑏(𝑥𝐵, 𝑦𝐵𝐶)𝑐))))
7069ralrimivvva 3136 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) → ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)(𝑏(+g𝑌)𝑐)) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏)(+g𝑌)(𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)) ∧ ((𝑎(+g𝑌)𝑏)(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)(+g𝑌)(𝑏(𝑥𝐵, 𝑦𝐵𝐶)𝑐))))
7116, 32, 703jca 1108 . . 3 (((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) → (𝑋 ∈ Abel ∧ (mulGrp‘𝑋) ∈ SGrp ∧ ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)(𝑏(+g𝑌)𝑐)) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏)(+g𝑌)(𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)) ∧ ((𝑎(+g𝑌)𝑏)(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)(+g𝑌)(𝑏(𝑥𝐵, 𝑦𝐵𝐶)𝑐)))))
7213, 71mpdan 674 . 2 ((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) → (𝑋 ∈ Abel ∧ (mulGrp‘𝑋) ∈ SGrp ∧ ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)(𝑏(+g𝑌)𝑐)) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏)(+g𝑌)(𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)) ∧ ((𝑎(+g𝑌)𝑏)(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)(+g𝑌)(𝑏(𝑥𝐵, 𝑦𝐵𝐶)𝑐)))))
73 plusgid 16442 . . . . 5 +g = Slot (+g‘ndx)
74 plusgndxnmulrndx 16463 . . . . 5 (+g‘ndx) ≠ (.r‘ndx)
7573, 74setsnid 16385 . . . 4 (+g𝑌) = (+g‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))
7614fveq2i 6496 . . . 4 (+g𝑋) = (+g‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))
7775, 76eqtr4i 2799 . . 3 (+g𝑌) = (+g𝑋)
7814eqcomi 2781 . . . . 5 (𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩) = 𝑋
7978fveq2i 6496 . . . 4 (.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩)) = (.r𝑋)
8026, 79eqtri 2796 . . 3 (𝑥𝐵, 𝑦𝐵𝐶) = (.r𝑋)
8118, 17, 77, 80isrng 43451 . 2 (𝑋 ∈ Rng ↔ (𝑋 ∈ Abel ∧ (mulGrp‘𝑋) ∈ SGrp ∧ ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)(𝑏(+g𝑌)𝑐)) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏)(+g𝑌)(𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)) ∧ ((𝑎(+g𝑌)𝑏)(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)(+g𝑌)(𝑏(𝑥𝐵, 𝑦𝐵𝐶)𝑐)))))
8272, 81sylibr 226 1 ((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) → 𝑋 ∈ Rng)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1068   = wceq 1507  wcel 2048  wne 2961  wral 3082  Vcvv 3409  c0 4173  cop 4441  cfv 6182  (class class class)co 6970  cmpo 6972  cn 11431  0cn0 11700  ndxcnx 16326   sSet csts 16327  Basecbs 16329  +gcplusg 16411  .rcmulr 16412  0gc0g 16559  SGrpcsgrp 17741  Mndcmnd 17752  Abelcabl 18657  mulGrpcmgp 18952  Ringcrg 19010  CRingccrg 19011  ℤ/nczn 20342  Rngcrng 43449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404  ax-addf 10406  ax-mulf 10407
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7494  df-2nd 7495  df-tpos 7688  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-1o 7897  df-oadd 7901  df-er 8081  df-ec 8083  df-qs 8087  df-en 8299  df-dom 8300  df-sdom 8301  df-fin 8302  df-sup 8693  df-inf 8694  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-nn 11432  df-2 11496  df-3 11497  df-4 11498  df-5 11499  df-6 11500  df-7 11501  df-8 11502  df-9 11503  df-n0 11701  df-z 11787  df-dec 11905  df-uz 12052  df-fz 12702  df-struct 16331  df-ndx 16332  df-slot 16333  df-base 16335  df-sets 16336  df-ress 16337  df-plusg 16424  df-mulr 16425  df-starv 16426  df-sca 16427  df-vsca 16428  df-ip 16429  df-tset 16430  df-ple 16431  df-ds 16433  df-unif 16434  df-0g 16561  df-imas 16627  df-qus 16628  df-mgm 17700  df-sgrp 17742  df-mnd 17753  df-grp 17884  df-minusg 17885  df-sbg 17886  df-subg 18050  df-nsg 18051  df-eqg 18052  df-cmn 18658  df-abl 18659  df-mgp 18953  df-ur 18965  df-ring 19012  df-cring 19013  df-oppr 19086  df-subrg 19246  df-lmod 19348  df-lss 19416  df-lsp 19456  df-sra 19656  df-rgmod 19657  df-lidl 19658  df-rsp 19659  df-2idl 19716  df-cnfld 20238  df-zring 20310  df-zn 20346  df-rng0 43450
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator