Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cznrng Structured version   Visualization version   GIF version

Theorem cznrng 48182
Description: The ring constructed from a ℤ/n structure by replacing the (multiplicative) ring operation by a constant operation is a non-unital ring. (Contributed by AV, 17-Feb-2020.)
Hypotheses
Ref Expression
cznrng.y 𝑌 = (ℤ/nℤ‘𝑁)
cznrng.b 𝐵 = (Base‘𝑌)
cznrng.x 𝑋 = (𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩)
cznrng.0 0 = (0g𝑌)
Assertion
Ref Expression
cznrng ((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) → 𝑋 ∈ Rng)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝑁,𝑦   𝑥,𝑋   𝑥,𝑌,𝑦   𝑥, 0 ,𝑦
Allowed substitution hint:   𝑋(𝑦)

Proof of Theorem cznrng
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnn0 12535 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 cznrng.y . . . . . . 7 𝑌 = (ℤ/nℤ‘𝑁)
32zncrng 21564 . . . . . 6 (𝑁 ∈ ℕ0𝑌 ∈ CRing)
41, 3syl 17 . . . . 5 (𝑁 ∈ ℕ → 𝑌 ∈ CRing)
5 crngring 20243 . . . . . 6 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
6 cznrng.b . . . . . . . 8 𝐵 = (Base‘𝑌)
7 cznrng.0 . . . . . . . 8 0 = (0g𝑌)
86, 7ring0cl 20265 . . . . . . 7 (𝑌 ∈ Ring → 0𝐵)
9 eleq1a 2835 . . . . . . 7 ( 0𝐵 → (𝐶 = 0𝐶𝐵))
108, 9syl 17 . . . . . 6 (𝑌 ∈ Ring → (𝐶 = 0𝐶𝐵))
115, 10syl 17 . . . . 5 (𝑌 ∈ CRing → (𝐶 = 0𝐶𝐵))
124, 11syl 17 . . . 4 (𝑁 ∈ ℕ → (𝐶 = 0𝐶𝐵))
1312imp 406 . . 3 ((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) → 𝐶𝐵)
14 cznrng.x . . . . . 6 𝑋 = (𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩)
152, 6, 14cznabel 48181 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐶𝐵) → 𝑋 ∈ Abel)
1615adantlr 715 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) → 𝑋 ∈ Abel)
17 eqid 2736 . . . . . 6 (mulGrp‘𝑋) = (mulGrp‘𝑋)
182, 6, 14cznrnglem 48180 . . . . . 6 𝐵 = (Base‘𝑋)
1917, 18mgpbas 20143 . . . . 5 𝐵 = (Base‘(mulGrp‘𝑋))
2014fveq2i 6908 . . . . . . 7 (mulGrp‘𝑋) = (mulGrp‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))
212fvexi 6919 . . . . . . . 8 𝑌 ∈ V
226fvexi 6919 . . . . . . . . 9 𝐵 ∈ V
2322, 22mpoex 8105 . . . . . . . 8 (𝑥𝐵, 𝑦𝐵𝐶) ∈ V
24 mulridx 17339 . . . . . . . . 9 .r = Slot (.r‘ndx)
2524setsid 17245 . . . . . . . 8 ((𝑌 ∈ V ∧ (𝑥𝐵, 𝑦𝐵𝐶) ∈ V) → (𝑥𝐵, 𝑦𝐵𝐶) = (.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩)))
2621, 23, 25mp2an 692 . . . . . . 7 (𝑥𝐵, 𝑦𝐵𝐶) = (.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))
2720, 26mgpplusg 20142 . . . . . 6 (𝑥𝐵, 𝑦𝐵𝐶) = (+g‘(mulGrp‘𝑋))
2827eqcomi 2745 . . . . 5 (+g‘(mulGrp‘𝑋)) = (𝑥𝐵, 𝑦𝐵𝐶)
29 ne0i 4340 . . . . . 6 (𝐶𝐵𝐵 ≠ ∅)
3029adantl 481 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) → 𝐵 ≠ ∅)
31 simpr 484 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) → 𝐶𝐵)
3219, 28, 30, 31copissgrp 48089 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) → (mulGrp‘𝑋) ∈ Smgrp)
33 oveq1 7439 . . . . . . . . 9 (𝐶 = 0 → (𝐶(+g𝑌)𝐶) = ( 0 (+g𝑌)𝐶))
3433ad3antlr 731 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝐶(+g𝑌)𝐶) = ( 0 (+g𝑌)𝐶))
354, 5syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑌 ∈ Ring)
36 ringmnd 20241 . . . . . . . . . . . . 13 (𝑌 ∈ Ring → 𝑌 ∈ Mnd)
3735, 36syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑌 ∈ Mnd)
3837adantr 480 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) → 𝑌 ∈ Mnd)
3938anim1i 615 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) → (𝑌 ∈ Mnd ∧ 𝐶𝐵))
4039adantr 480 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑌 ∈ Mnd ∧ 𝐶𝐵))
41 eqid 2736 . . . . . . . . . 10 (+g𝑌) = (+g𝑌)
426, 41, 7mndlid 18768 . . . . . . . . 9 ((𝑌 ∈ Mnd ∧ 𝐶𝐵) → ( 0 (+g𝑌)𝐶) = 𝐶)
4340, 42syl 17 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → ( 0 (+g𝑌)𝐶) = 𝐶)
4434, 43eqtrd 2776 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝐶(+g𝑌)𝐶) = 𝐶)
45 eqidd 2737 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑥𝐵, 𝑦𝐵𝐶) = (𝑥𝐵, 𝑦𝐵𝐶))
46 eqidd 2737 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) ∧ (𝑥 = 𝑎𝑦 = 𝑏)) → 𝐶 = 𝐶)
47 simpr1 1194 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → 𝑎𝐵)
48 simpr2 1195 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → 𝑏𝐵)
4931adantr 480 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → 𝐶𝐵)
5045, 46, 47, 48, 49ovmpod 7586 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏) = 𝐶)
51 eqidd 2737 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) ∧ (𝑥 = 𝑎𝑦 = 𝑐)) → 𝐶 = 𝐶)
52 simpr3 1196 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → 𝑐𝐵)
5345, 51, 47, 52, 49ovmpod 7586 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝐶)
5450, 53oveq12d 7450 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏)(+g𝑌)(𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)) = (𝐶(+g𝑌)𝐶))
55 eqidd 2737 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) ∧ (𝑥 = 𝑎𝑦 = (𝑏(+g𝑌)𝑐))) → 𝐶 = 𝐶)
5635ad3antrrr 730 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → 𝑌 ∈ Ring)
576, 41ringacl 20276 . . . . . . . . 9 ((𝑌 ∈ Ring ∧ 𝑏𝐵𝑐𝐵) → (𝑏(+g𝑌)𝑐) ∈ 𝐵)
5856, 48, 52, 57syl3anc 1372 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑏(+g𝑌)𝑐) ∈ 𝐵)
5945, 55, 47, 58, 49ovmpod 7586 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑎(𝑥𝐵, 𝑦𝐵𝐶)(𝑏(+g𝑌)𝑐)) = 𝐶)
6044, 54, 593eqtr4rd 2787 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑎(𝑥𝐵, 𝑦𝐵𝐶)(𝑏(+g𝑌)𝑐)) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏)(+g𝑌)(𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)))
61 eqidd 2737 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) ∧ (𝑥 = 𝑏𝑦 = 𝑐)) → 𝐶 = 𝐶)
6245, 61, 48, 52, 49ovmpod 7586 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑏(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝐶)
6353, 62oveq12d 7450 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)(+g𝑌)(𝑏(𝑥𝐵, 𝑦𝐵𝐶)𝑐)) = (𝐶(+g𝑌)𝐶))
64 eqidd 2737 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) ∧ (𝑥 = (𝑎(+g𝑌)𝑏) ∧ 𝑦 = 𝑐)) → 𝐶 = 𝐶)
656, 41ringacl 20276 . . . . . . . . 9 ((𝑌 ∈ Ring ∧ 𝑎𝐵𝑏𝐵) → (𝑎(+g𝑌)𝑏) ∈ 𝐵)
6656, 47, 48, 65syl3anc 1372 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → (𝑎(+g𝑌)𝑏) ∈ 𝐵)
6745, 64, 66, 52, 49ovmpod 7586 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → ((𝑎(+g𝑌)𝑏)(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝐶)
6844, 63, 673eqtr4rd 2787 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → ((𝑎(+g𝑌)𝑏)(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)(+g𝑌)(𝑏(𝑥𝐵, 𝑦𝐵𝐶)𝑐)))
6960, 68jca 511 . . . . 5 ((((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) ∧ (𝑎𝐵𝑏𝐵𝑐𝐵)) → ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)(𝑏(+g𝑌)𝑐)) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏)(+g𝑌)(𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)) ∧ ((𝑎(+g𝑌)𝑏)(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)(+g𝑌)(𝑏(𝑥𝐵, 𝑦𝐵𝐶)𝑐))))
7069ralrimivvva 3204 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) → ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)(𝑏(+g𝑌)𝑐)) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏)(+g𝑌)(𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)) ∧ ((𝑎(+g𝑌)𝑏)(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)(+g𝑌)(𝑏(𝑥𝐵, 𝑦𝐵𝐶)𝑐))))
7116, 32, 703jca 1128 . . 3 (((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) ∧ 𝐶𝐵) → (𝑋 ∈ Abel ∧ (mulGrp‘𝑋) ∈ Smgrp ∧ ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)(𝑏(+g𝑌)𝑐)) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏)(+g𝑌)(𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)) ∧ ((𝑎(+g𝑌)𝑏)(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)(+g𝑌)(𝑏(𝑥𝐵, 𝑦𝐵𝐶)𝑐)))))
7213, 71mpdan 687 . 2 ((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) → (𝑋 ∈ Abel ∧ (mulGrp‘𝑋) ∈ Smgrp ∧ ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)(𝑏(+g𝑌)𝑐)) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏)(+g𝑌)(𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)) ∧ ((𝑎(+g𝑌)𝑏)(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)(+g𝑌)(𝑏(𝑥𝐵, 𝑦𝐵𝐶)𝑐)))))
73 plusgid 17325 . . . . 5 +g = Slot (+g‘ndx)
74 plusgndxnmulrndx 17342 . . . . 5 (+g‘ndx) ≠ (.r‘ndx)
7573, 74setsnid 17246 . . . 4 (+g𝑌) = (+g‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))
7614fveq2i 6908 . . . 4 (+g𝑋) = (+g‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))
7775, 76eqtr4i 2767 . . 3 (+g𝑌) = (+g𝑋)
7814eqcomi 2745 . . . . 5 (𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩) = 𝑋
7978fveq2i 6908 . . . 4 (.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩)) = (.r𝑋)
8026, 79eqtri 2764 . . 3 (𝑥𝐵, 𝑦𝐵𝐶) = (.r𝑋)
8118, 17, 77, 80isrng 20152 . 2 (𝑋 ∈ Rng ↔ (𝑋 ∈ Abel ∧ (mulGrp‘𝑋) ∈ Smgrp ∧ ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)(𝑏(+g𝑌)𝑐)) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏)(+g𝑌)(𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)) ∧ ((𝑎(+g𝑌)𝑏)(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐)(+g𝑌)(𝑏(𝑥𝐵, 𝑦𝐵𝐶)𝑐)))))
8272, 81sylibr 234 1 ((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) → 𝑋 ∈ Rng)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2939  wral 3060  Vcvv 3479  c0 4332  cop 4631  cfv 6560  (class class class)co 7432  cmpo 7434  cn 12267  0cn0 12528   sSet csts 17201  ndxcnx 17231  Basecbs 17248  +gcplusg 17298  .rcmulr 17299  0gc0g 17485  Smgrpcsgrp 18732  Mndcmnd 18748  Abelcabl 19800  mulGrpcmgp 20138  Rngcrng 20150  Ringcrg 20231  CRingccrg 20232  ℤ/nczn 21514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-addf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-tpos 8252  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-ec 8748  df-qs 8752  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-inf 9484  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-fz 13549  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-0g 17487  df-imas 17554  df-qus 17555  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-grp 18955  df-minusg 18956  df-sbg 18957  df-subg 19142  df-nsg 19143  df-eqg 19144  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-ring 20233  df-cring 20234  df-oppr 20335  df-subrng 20547  df-subrg 20571  df-lmod 20861  df-lss 20931  df-lsp 20971  df-sra 21173  df-rgmod 21174  df-lidl 21219  df-rsp 21220  df-2idl 21261  df-cnfld 21366  df-zring 21459  df-zn 21518
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator