![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cpm2mvalel | Structured version Visualization version GIF version |
Description: A (matrix) element of the result of an inverse matrix transformation. (Contributed by AV, 14-Dec-2019.) |
Ref | Expression |
---|---|
cpm2mfval.i | ⊢ 𝐼 = (𝑁 cPolyMatToMat 𝑅) |
cpm2mfval.s | ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) |
Ref | Expression |
---|---|
cpm2mvalel | ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝑆) ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁)) → (𝑋(𝐼‘𝑀)𝑌) = ((coe1‘(𝑋𝑀𝑌))‘0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cpm2mfval.i | . . . 4 ⊢ 𝐼 = (𝑁 cPolyMatToMat 𝑅) | |
2 | cpm2mfval.s | . . . 4 ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) | |
3 | 1, 2 | cpm2mval 22251 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝑆) → (𝐼‘𝑀) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))) |
4 | 3 | adantr 481 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝑆) ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁)) → (𝐼‘𝑀) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))) |
5 | oveq12 7417 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥𝑀𝑦) = (𝑋𝑀𝑌)) | |
6 | 5 | fveq2d 6895 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (coe1‘(𝑥𝑀𝑦)) = (coe1‘(𝑋𝑀𝑌))) |
7 | 6 | fveq1d 6893 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((coe1‘(𝑥𝑀𝑦))‘0) = ((coe1‘(𝑋𝑀𝑌))‘0)) |
8 | 7 | adantl 482 | . 2 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝑆) ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁)) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → ((coe1‘(𝑥𝑀𝑦))‘0) = ((coe1‘(𝑋𝑀𝑌))‘0)) |
9 | simprl 769 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝑆) ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁)) → 𝑋 ∈ 𝑁) | |
10 | simprr 771 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝑆) ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁)) → 𝑌 ∈ 𝑁) | |
11 | fvexd 6906 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝑆) ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁)) → ((coe1‘(𝑋𝑀𝑌))‘0) ∈ V) | |
12 | 4, 8, 9, 10, 11 | ovmpod 7559 | 1 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝑆) ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁)) → (𝑋(𝐼‘𝑀)𝑌) = ((coe1‘(𝑋𝑀𝑌))‘0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ‘cfv 6543 (class class class)co 7408 ∈ cmpo 7410 Fincfn 8938 0cc0 11109 coe1cco1 21701 ConstPolyMat ccpmat 22204 cPolyMatToMat ccpmat2mat 22206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1st 7974 df-2nd 7975 df-cpmat2mat 22209 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |