MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpm2mvalel Structured version   Visualization version   GIF version

Theorem cpm2mvalel 21287
Description: A (matrix) element of the result of an inverse matrix transformation. (Contributed by AV, 14-Dec-2019.)
Hypotheses
Ref Expression
cpm2mfval.i 𝐼 = (𝑁 cPolyMatToMat 𝑅)
cpm2mfval.s 𝑆 = (𝑁 ConstPolyMat 𝑅)
Assertion
Ref Expression
cpm2mvalel (((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) ∧ (𝑋𝑁𝑌𝑁)) → (𝑋(𝐼𝑀)𝑌) = ((coe1‘(𝑋𝑀𝑌))‘0))

Proof of Theorem cpm2mvalel
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cpm2mfval.i . . . 4 𝐼 = (𝑁 cPolyMatToMat 𝑅)
2 cpm2mfval.s . . . 4 𝑆 = (𝑁 ConstPolyMat 𝑅)
31, 2cpm2mval 21286 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) → (𝐼𝑀) = (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0)))
43adantr 481 . 2 (((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) ∧ (𝑋𝑁𝑌𝑁)) → (𝐼𝑀) = (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0)))
5 oveq12 7154 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥𝑀𝑦) = (𝑋𝑀𝑌))
65fveq2d 6667 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → (coe1‘(𝑥𝑀𝑦)) = (coe1‘(𝑋𝑀𝑌)))
76fveq1d 6665 . . 3 ((𝑥 = 𝑋𝑦 = 𝑌) → ((coe1‘(𝑥𝑀𝑦))‘0) = ((coe1‘(𝑋𝑀𝑌))‘0))
87adantl 482 . 2 ((((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) ∧ (𝑋𝑁𝑌𝑁)) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ((coe1‘(𝑥𝑀𝑦))‘0) = ((coe1‘(𝑋𝑀𝑌))‘0))
9 simprl 767 . 2 (((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) ∧ (𝑋𝑁𝑌𝑁)) → 𝑋𝑁)
10 simprr 769 . 2 (((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) ∧ (𝑋𝑁𝑌𝑁)) → 𝑌𝑁)
11 fvexd 6678 . 2 (((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) ∧ (𝑋𝑁𝑌𝑁)) → ((coe1‘(𝑋𝑀𝑌))‘0) ∈ V)
124, 8, 9, 10, 11ovmpod 7291 1 (((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) ∧ (𝑋𝑁𝑌𝑁)) → (𝑋(𝐼𝑀)𝑌) = ((coe1‘(𝑋𝑀𝑌))‘0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1079   = wceq 1528  wcel 2105  Vcvv 3492  cfv 6348  (class class class)co 7145  cmpo 7147  Fincfn 8497  0cc0 10525  coe1cco1 20274   ConstPolyMat ccpmat 21239   cPolyMatToMat ccpmat2mat 21241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-1st 7678  df-2nd 7679  df-cpmat2mat 21244
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator