Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cpm2mvalel | Structured version Visualization version GIF version |
Description: A (matrix) element of the result of an inverse matrix transformation. (Contributed by AV, 14-Dec-2019.) |
Ref | Expression |
---|---|
cpm2mfval.i | ⊢ 𝐼 = (𝑁 cPolyMatToMat 𝑅) |
cpm2mfval.s | ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) |
Ref | Expression |
---|---|
cpm2mvalel | ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝑆) ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁)) → (𝑋(𝐼‘𝑀)𝑌) = ((coe1‘(𝑋𝑀𝑌))‘0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cpm2mfval.i | . . . 4 ⊢ 𝐼 = (𝑁 cPolyMatToMat 𝑅) | |
2 | cpm2mfval.s | . . . 4 ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) | |
3 | 1, 2 | cpm2mval 21807 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝑆) → (𝐼‘𝑀) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))) |
4 | 3 | adantr 480 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝑆) ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁)) → (𝐼‘𝑀) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))) |
5 | oveq12 7264 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥𝑀𝑦) = (𝑋𝑀𝑌)) | |
6 | 5 | fveq2d 6760 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (coe1‘(𝑥𝑀𝑦)) = (coe1‘(𝑋𝑀𝑌))) |
7 | 6 | fveq1d 6758 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((coe1‘(𝑥𝑀𝑦))‘0) = ((coe1‘(𝑋𝑀𝑌))‘0)) |
8 | 7 | adantl 481 | . 2 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝑆) ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁)) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → ((coe1‘(𝑥𝑀𝑦))‘0) = ((coe1‘(𝑋𝑀𝑌))‘0)) |
9 | simprl 767 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝑆) ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁)) → 𝑋 ∈ 𝑁) | |
10 | simprr 769 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝑆) ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁)) → 𝑌 ∈ 𝑁) | |
11 | fvexd 6771 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝑆) ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁)) → ((coe1‘(𝑋𝑀𝑌))‘0) ∈ V) | |
12 | 4, 8, 9, 10, 11 | ovmpod 7403 | 1 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝑆) ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁)) → (𝑋(𝐼‘𝑀)𝑌) = ((coe1‘(𝑋𝑀𝑌))‘0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 Fincfn 8691 0cc0 10802 coe1cco1 21259 ConstPolyMat ccpmat 21760 cPolyMatToMat ccpmat2mat 21762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-cpmat2mat 21765 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |