| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cpm2mval | Structured version Visualization version GIF version | ||
| Description: The result of an inverse matrix transformation. (Contributed by AV, 12-Nov-2019.) (Revised by AV, 14-Dec-2019.) |
| Ref | Expression |
|---|---|
| cpm2mfval.i | ⊢ 𝐼 = (𝑁 cPolyMatToMat 𝑅) |
| cpm2mfval.s | ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) |
| Ref | Expression |
|---|---|
| cpm2mval | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝑆) → (𝐼‘𝑀) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cpm2mfval.i | . . . 4 ⊢ 𝐼 = (𝑁 cPolyMatToMat 𝑅) | |
| 2 | cpm2mfval.s | . . . 4 ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) | |
| 3 | 1, 2 | cpm2mfval 22652 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐼 = (𝑚 ∈ 𝑆 ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))) |
| 4 | 3 | 3adant3 1132 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝑆) → 𝐼 = (𝑚 ∈ 𝑆 ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))) |
| 5 | oveq 7359 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (𝑥𝑚𝑦) = (𝑥𝑀𝑦)) | |
| 6 | 5 | fveq2d 6830 | . . . . 5 ⊢ (𝑚 = 𝑀 → (coe1‘(𝑥𝑚𝑦)) = (coe1‘(𝑥𝑀𝑦))) |
| 7 | 6 | fveq1d 6828 | . . . 4 ⊢ (𝑚 = 𝑀 → ((coe1‘(𝑥𝑚𝑦))‘0) = ((coe1‘(𝑥𝑀𝑦))‘0)) |
| 8 | 7 | mpoeq3dv 7432 | . . 3 ⊢ (𝑚 = 𝑀 → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))) |
| 9 | 8 | adantl 481 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝑆) ∧ 𝑚 = 𝑀) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))) |
| 10 | simp3 1138 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝑆) → 𝑀 ∈ 𝑆) | |
| 11 | simp1 1136 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝑆) → 𝑁 ∈ Fin) | |
| 12 | mpoexga 8019 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0)) ∈ V) | |
| 13 | 11, 11, 12 | syl2anc 584 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝑆) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0)) ∈ V) |
| 14 | 4, 9, 10, 13 | fvmptd 6941 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝑆) → (𝐼‘𝑀) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ↦ cmpt 5176 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 Fincfn 8879 0cc0 11028 coe1cco1 22078 ConstPolyMat ccpmat 22606 cPolyMatToMat ccpmat2mat 22608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-cpmat2mat 22611 |
| This theorem is referenced by: cpm2mvalel 22654 m2cpminvid 22656 m2cpminvid2 22658 |
| Copyright terms: Public domain | W3C validator |