MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpm2mval Structured version   Visualization version   GIF version

Theorem cpm2mval 22473
Description: The result of an inverse matrix transformation. (Contributed by AV, 12-Nov-2019.) (Revised by AV, 14-Dec-2019.)
Hypotheses
Ref Expression
cpm2mfval.i 𝐼 = (𝑁 cPolyMatToMat 𝑅)
cpm2mfval.s 𝑆 = (𝑁 ConstPolyMat 𝑅)
Assertion
Ref Expression
cpm2mval ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) → (𝐼𝑀) = (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0)))
Distinct variable groups:   𝑥,𝑁,𝑦   𝑥,𝑅,𝑦   𝑥,𝑀,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝐼(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem cpm2mval
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 cpm2mfval.i . . . 4 𝐼 = (𝑁 cPolyMatToMat 𝑅)
2 cpm2mfval.s . . . 4 𝑆 = (𝑁 ConstPolyMat 𝑅)
31, 2cpm2mfval 22472 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝐼 = (𝑚𝑆 ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))))
433adant3 1131 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) → 𝐼 = (𝑚𝑆 ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))))
5 oveq 7418 . . . . . 6 (𝑚 = 𝑀 → (𝑥𝑚𝑦) = (𝑥𝑀𝑦))
65fveq2d 6895 . . . . 5 (𝑚 = 𝑀 → (coe1‘(𝑥𝑚𝑦)) = (coe1‘(𝑥𝑀𝑦)))
76fveq1d 6893 . . . 4 (𝑚 = 𝑀 → ((coe1‘(𝑥𝑚𝑦))‘0) = ((coe1‘(𝑥𝑀𝑦))‘0))
87mpoeq3dv 7491 . . 3 (𝑚 = 𝑀 → (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)) = (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0)))
98adantl 481 . 2 (((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) ∧ 𝑚 = 𝑀) → (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)) = (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0)))
10 simp3 1137 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) → 𝑀𝑆)
11 simp1 1135 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) → 𝑁 ∈ Fin)
12 mpoexga 8068 . . 3 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0)) ∈ V)
1311, 11, 12syl2anc 583 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) → (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0)) ∈ V)
144, 9, 10, 13fvmptd 7005 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) → (𝐼𝑀) = (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2105  Vcvv 3473  cmpt 5231  cfv 6543  (class class class)co 7412  cmpo 7414  Fincfn 8943  0cc0 11114  coe1cco1 21922   ConstPolyMat ccpmat 22426   cPolyMatToMat ccpmat2mat 22428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7979  df-2nd 7980  df-cpmat2mat 22431
This theorem is referenced by:  cpm2mvalel  22474  m2cpminvid  22476  m2cpminvid2  22478
  Copyright terms: Public domain W3C validator