MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpm2mval Structured version   Visualization version   GIF version

Theorem cpm2mval 22693
Description: The result of an inverse matrix transformation. (Contributed by AV, 12-Nov-2019.) (Revised by AV, 14-Dec-2019.)
Hypotheses
Ref Expression
cpm2mfval.i 𝐼 = (𝑁 cPolyMatToMat 𝑅)
cpm2mfval.s 𝑆 = (𝑁 ConstPolyMat 𝑅)
Assertion
Ref Expression
cpm2mval ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) → (𝐼𝑀) = (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0)))
Distinct variable groups:   𝑥,𝑁,𝑦   𝑥,𝑅,𝑦   𝑥,𝑀,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝐼(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem cpm2mval
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 cpm2mfval.i . . . 4 𝐼 = (𝑁 cPolyMatToMat 𝑅)
2 cpm2mfval.s . . . 4 𝑆 = (𝑁 ConstPolyMat 𝑅)
31, 2cpm2mfval 22692 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝐼 = (𝑚𝑆 ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))))
433adant3 1132 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) → 𝐼 = (𝑚𝑆 ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))))
5 oveq 7416 . . . . . 6 (𝑚 = 𝑀 → (𝑥𝑚𝑦) = (𝑥𝑀𝑦))
65fveq2d 6885 . . . . 5 (𝑚 = 𝑀 → (coe1‘(𝑥𝑚𝑦)) = (coe1‘(𝑥𝑀𝑦)))
76fveq1d 6883 . . . 4 (𝑚 = 𝑀 → ((coe1‘(𝑥𝑚𝑦))‘0) = ((coe1‘(𝑥𝑀𝑦))‘0))
87mpoeq3dv 7491 . . 3 (𝑚 = 𝑀 → (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)) = (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0)))
98adantl 481 . 2 (((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) ∧ 𝑚 = 𝑀) → (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)) = (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0)))
10 simp3 1138 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) → 𝑀𝑆)
11 simp1 1136 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) → 𝑁 ∈ Fin)
12 mpoexga 8081 . . 3 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0)) ∈ V)
1311, 11, 12syl2anc 584 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) → (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0)) ∈ V)
144, 9, 10, 13fvmptd 6998 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) → (𝐼𝑀) = (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3464  cmpt 5206  cfv 6536  (class class class)co 7410  cmpo 7412  Fincfn 8964  0cc0 11134  coe1cco1 22118   ConstPolyMat ccpmat 22646   cPolyMatToMat ccpmat2mat 22648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-cpmat2mat 22651
This theorem is referenced by:  cpm2mvalel  22694  m2cpminvid  22696  m2cpminvid2  22698
  Copyright terms: Public domain W3C validator