MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpm2mval Structured version   Visualization version   GIF version

Theorem cpm2mval 21360
Description: The result of an inverse matrix transformation. (Contributed by AV, 12-Nov-2019.) (Revised by AV, 14-Dec-2019.)
Hypotheses
Ref Expression
cpm2mfval.i 𝐼 = (𝑁 cPolyMatToMat 𝑅)
cpm2mfval.s 𝑆 = (𝑁 ConstPolyMat 𝑅)
Assertion
Ref Expression
cpm2mval ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) → (𝐼𝑀) = (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0)))
Distinct variable groups:   𝑥,𝑁,𝑦   𝑥,𝑅,𝑦   𝑥,𝑀,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝐼(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem cpm2mval
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 cpm2mfval.i . . . 4 𝐼 = (𝑁 cPolyMatToMat 𝑅)
2 cpm2mfval.s . . . 4 𝑆 = (𝑁 ConstPolyMat 𝑅)
31, 2cpm2mfval 21359 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝐼 = (𝑚𝑆 ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))))
433adant3 1128 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) → 𝐼 = (𝑚𝑆 ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))))
5 oveq 7164 . . . . . 6 (𝑚 = 𝑀 → (𝑥𝑚𝑦) = (𝑥𝑀𝑦))
65fveq2d 6676 . . . . 5 (𝑚 = 𝑀 → (coe1‘(𝑥𝑚𝑦)) = (coe1‘(𝑥𝑀𝑦)))
76fveq1d 6674 . . . 4 (𝑚 = 𝑀 → ((coe1‘(𝑥𝑚𝑦))‘0) = ((coe1‘(𝑥𝑀𝑦))‘0))
87mpoeq3dv 7235 . . 3 (𝑚 = 𝑀 → (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)) = (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0)))
98adantl 484 . 2 (((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) ∧ 𝑚 = 𝑀) → (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)) = (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0)))
10 simp3 1134 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) → 𝑀𝑆)
11 simp1 1132 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) → 𝑁 ∈ Fin)
12 mpoexga 7777 . . 3 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0)) ∈ V)
1311, 11, 12syl2anc 586 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) → (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0)) ∈ V)
144, 9, 10, 13fvmptd 6777 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) → (𝐼𝑀) = (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1083   = wceq 1537  wcel 2114  Vcvv 3496  cmpt 5148  cfv 6357  (class class class)co 7158  cmpo 7160  Fincfn 8511  0cc0 10539  coe1cco1 20348   ConstPolyMat ccpmat 21313   cPolyMatToMat ccpmat2mat 21315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-cpmat2mat 21318
This theorem is referenced by:  cpm2mvalel  21361  m2cpminvid  21363  m2cpminvid2  21365
  Copyright terms: Public domain W3C validator