MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curfuncf Structured version   Visualization version   GIF version

Theorem curfuncf 17967
Description: Cancellation of curry with uncurry. (Contributed by Mario Carneiro, 13-Jan-2017.)
Hypotheses
Ref Expression
uncfval.g 𝐹 = (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)
uncfval.c (𝜑𝐷 ∈ Cat)
uncfval.d (𝜑𝐸 ∈ Cat)
uncfval.f (𝜑𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)))
Assertion
Ref Expression
curfuncf (𝜑 → (⟨𝐶, 𝐷⟩ curryF 𝐹) = 𝐺)

Proof of Theorem curfuncf
Dummy variables 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uncfval.g . . . . . . . . . 10 𝐹 = (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)
2 uncfval.c . . . . . . . . . . 11 (𝜑𝐷 ∈ Cat)
32ad2antrr 723 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝐷 ∈ Cat)
4 uncfval.d . . . . . . . . . . 11 (𝜑𝐸 ∈ Cat)
54ad2antrr 723 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝐸 ∈ Cat)
6 uncfval.f . . . . . . . . . . 11 (𝜑𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)))
76ad2antrr 723 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)))
8 eqid 2740 . . . . . . . . . 10 (Base‘𝐶) = (Base‘𝐶)
9 eqid 2740 . . . . . . . . . 10 (Base‘𝐷) = (Base‘𝐷)
10 simplr 766 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝑥 ∈ (Base‘𝐶))
11 simpr 485 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝑦 ∈ (Base‘𝐷))
121, 3, 5, 7, 8, 9, 10, 11uncf1 17965 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → (𝑥(1st𝐹)𝑦) = ((1st ‘((1st𝐺)‘𝑥))‘𝑦))
1312mpteq2dva 5179 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)) = (𝑦 ∈ (Base‘𝐷) ↦ ((1st ‘((1st𝐺)‘𝑥))‘𝑦)))
14 eqid 2740 . . . . . . . . . 10 (Base‘𝐸) = (Base‘𝐸)
15 relfunc 17588 . . . . . . . . . . 11 Rel (𝐷 Func 𝐸)
16 eqid 2740 . . . . . . . . . . . . . 14 (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸)
1716fucbas 17688 . . . . . . . . . . . . 13 (𝐷 Func 𝐸) = (Base‘(𝐷 FuncCat 𝐸))
18 relfunc 17588 . . . . . . . . . . . . . 14 Rel (𝐶 Func (𝐷 FuncCat 𝐸))
19 1st2ndbr 7877 . . . . . . . . . . . . . 14 ((Rel (𝐶 Func (𝐷 FuncCat 𝐸)) ∧ 𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸))) → (1st𝐺)(𝐶 Func (𝐷 FuncCat 𝐸))(2nd𝐺))
2018, 6, 19sylancr 587 . . . . . . . . . . . . 13 (𝜑 → (1st𝐺)(𝐶 Func (𝐷 FuncCat 𝐸))(2nd𝐺))
218, 17, 20funcf1 17592 . . . . . . . . . . . 12 (𝜑 → (1st𝐺):(Base‘𝐶)⟶(𝐷 Func 𝐸))
2221ffvelrnda 6958 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐺)‘𝑥) ∈ (𝐷 Func 𝐸))
23 1st2ndbr 7877 . . . . . . . . . . 11 ((Rel (𝐷 Func 𝐸) ∧ ((1st𝐺)‘𝑥) ∈ (𝐷 Func 𝐸)) → (1st ‘((1st𝐺)‘𝑥))(𝐷 Func 𝐸)(2nd ‘((1st𝐺)‘𝑥)))
2415, 22, 23sylancr 587 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝐶)) → (1st ‘((1st𝐺)‘𝑥))(𝐷 Func 𝐸)(2nd ‘((1st𝐺)‘𝑥)))
259, 14, 24funcf1 17592 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → (1st ‘((1st𝐺)‘𝑥)):(Base‘𝐷)⟶(Base‘𝐸))
2625feqmptd 6834 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → (1st ‘((1st𝐺)‘𝑥)) = (𝑦 ∈ (Base‘𝐷) ↦ ((1st ‘((1st𝐺)‘𝑥))‘𝑦)))
2713, 26eqtr4d 2783 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)) = (1st ‘((1st𝐺)‘𝑥)))
282ad3antrrr 727 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝐷 ∈ Cat)
294ad3antrrr 727 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝐸 ∈ Cat)
306ad3antrrr 727 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)))
31 simpllr 773 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑥 ∈ (Base‘𝐶))
32 simplrl 774 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑦 ∈ (Base‘𝐷))
33 eqid 2740 . . . . . . . . . . . . . 14 (Hom ‘𝐶) = (Hom ‘𝐶)
34 eqid 2740 . . . . . . . . . . . . . 14 (Hom ‘𝐷) = (Hom ‘𝐷)
35 simprr 770 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → 𝑧 ∈ (Base‘𝐷))
3635adantr 481 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑧 ∈ (Base‘𝐷))
37 eqid 2740 . . . . . . . . . . . . . . 15 (Id‘𝐶) = (Id‘𝐶)
38 funcrcl 17589 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)) → (𝐶 ∈ Cat ∧ (𝐷 FuncCat 𝐸) ∈ Cat))
396, 38syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐶 ∈ Cat ∧ (𝐷 FuncCat 𝐸) ∈ Cat))
4039simpld 495 . . . . . . . . . . . . . . . 16 (𝜑𝐶 ∈ Cat)
4140ad3antrrr 727 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝐶 ∈ Cat)
428, 33, 37, 41, 31catidcl 17402 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥))
43 simpr 485 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))
441, 28, 29, 30, 8, 9, 31, 32, 33, 34, 31, 36, 42, 43uncf2 17966 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔) = ((((𝑥(2nd𝐺)𝑥)‘((Id‘𝐶)‘𝑥))‘𝑧)(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑦), ((1st ‘((1st𝐺)‘𝑥))‘𝑧)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑥))‘𝑧))((𝑦(2nd ‘((1st𝐺)‘𝑥))𝑧)‘𝑔)))
45 eqid 2740 . . . . . . . . . . . . . . . . . 18 (Id‘(𝐷 FuncCat 𝐸)) = (Id‘(𝐷 FuncCat 𝐸))
4620ad3antrrr 727 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (1st𝐺)(𝐶 Func (𝐷 FuncCat 𝐸))(2nd𝐺))
478, 37, 45, 46, 31funcid 17596 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((𝑥(2nd𝐺)𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘(𝐷 FuncCat 𝐸))‘((1st𝐺)‘𝑥)))
48 eqid 2740 . . . . . . . . . . . . . . . . . 18 (Id‘𝐸) = (Id‘𝐸)
4922ad2antrr 723 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((1st𝐺)‘𝑥) ∈ (𝐷 Func 𝐸))
5016, 45, 48, 49fucid 17700 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((Id‘(𝐷 FuncCat 𝐸))‘((1st𝐺)‘𝑥)) = ((Id‘𝐸) ∘ (1st ‘((1st𝐺)‘𝑥))))
5147, 50eqtrd 2780 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((𝑥(2nd𝐺)𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐸) ∘ (1st ‘((1st𝐺)‘𝑥))))
5251fveq1d 6773 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (((𝑥(2nd𝐺)𝑥)‘((Id‘𝐶)‘𝑥))‘𝑧) = (((Id‘𝐸) ∘ (1st ‘((1st𝐺)‘𝑥)))‘𝑧))
5325ad2antrr 723 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (1st ‘((1st𝐺)‘𝑥)):(Base‘𝐷)⟶(Base‘𝐸))
54 fvco3 6864 . . . . . . . . . . . . . . . 16 (((1st ‘((1st𝐺)‘𝑥)):(Base‘𝐷)⟶(Base‘𝐸) ∧ 𝑧 ∈ (Base‘𝐷)) → (((Id‘𝐸) ∘ (1st ‘((1st𝐺)‘𝑥)))‘𝑧) = ((Id‘𝐸)‘((1st ‘((1st𝐺)‘𝑥))‘𝑧)))
5553, 36, 54syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (((Id‘𝐸) ∘ (1st ‘((1st𝐺)‘𝑥)))‘𝑧) = ((Id‘𝐸)‘((1st ‘((1st𝐺)‘𝑥))‘𝑧)))
5652, 55eqtrd 2780 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (((𝑥(2nd𝐺)𝑥)‘((Id‘𝐶)‘𝑥))‘𝑧) = ((Id‘𝐸)‘((1st ‘((1st𝐺)‘𝑥))‘𝑧)))
5756oveq1d 7287 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((((𝑥(2nd𝐺)𝑥)‘((Id‘𝐶)‘𝑥))‘𝑧)(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑦), ((1st ‘((1st𝐺)‘𝑥))‘𝑧)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑥))‘𝑧))((𝑦(2nd ‘((1st𝐺)‘𝑥))𝑧)‘𝑔)) = (((Id‘𝐸)‘((1st ‘((1st𝐺)‘𝑥))‘𝑧))(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑦), ((1st ‘((1st𝐺)‘𝑥))‘𝑧)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑥))‘𝑧))((𝑦(2nd ‘((1st𝐺)‘𝑥))𝑧)‘𝑔)))
58 eqid 2740 . . . . . . . . . . . . . 14 (Hom ‘𝐸) = (Hom ‘𝐸)
5953, 32ffvelrnd 6959 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((1st ‘((1st𝐺)‘𝑥))‘𝑦) ∈ (Base‘𝐸))
60 eqid 2740 . . . . . . . . . . . . . 14 (comp‘𝐸) = (comp‘𝐸)
6153, 36ffvelrnd 6959 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((1st ‘((1st𝐺)‘𝑥))‘𝑧) ∈ (Base‘𝐸))
6224adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (1st ‘((1st𝐺)‘𝑥))(𝐷 Func 𝐸)(2nd ‘((1st𝐺)‘𝑥)))
63 simprl 768 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → 𝑦 ∈ (Base‘𝐷))
649, 34, 58, 62, 63, 35funcf2 17594 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑦(2nd ‘((1st𝐺)‘𝑥))𝑧):(𝑦(Hom ‘𝐷)𝑧)⟶(((1st ‘((1st𝐺)‘𝑥))‘𝑦)(Hom ‘𝐸)((1st ‘((1st𝐺)‘𝑥))‘𝑧)))
6564ffvelrnda 6958 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((𝑦(2nd ‘((1st𝐺)‘𝑥))𝑧)‘𝑔) ∈ (((1st ‘((1st𝐺)‘𝑥))‘𝑦)(Hom ‘𝐸)((1st ‘((1st𝐺)‘𝑥))‘𝑧)))
6614, 58, 48, 29, 59, 60, 61, 65catlid 17403 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (((Id‘𝐸)‘((1st ‘((1st𝐺)‘𝑥))‘𝑧))(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑦), ((1st ‘((1st𝐺)‘𝑥))‘𝑧)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑥))‘𝑧))((𝑦(2nd ‘((1st𝐺)‘𝑥))𝑧)‘𝑔)) = ((𝑦(2nd ‘((1st𝐺)‘𝑥))𝑧)‘𝑔))
6744, 57, 663eqtrd 2784 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔) = ((𝑦(2nd ‘((1st𝐺)‘𝑥))𝑧)‘𝑔))
6867mpteq2dva 5179 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)) = (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ ((𝑦(2nd ‘((1st𝐺)‘𝑥))𝑧)‘𝑔)))
6964feqmptd 6834 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑦(2nd ‘((1st𝐺)‘𝑥))𝑧) = (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ ((𝑦(2nd ‘((1st𝐺)‘𝑥))𝑧)‘𝑔)))
7068, 69eqtr4d 2783 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)) = (𝑦(2nd ‘((1st𝐺)‘𝑥))𝑧))
71703impb 1114 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)) = (𝑦(2nd ‘((1st𝐺)‘𝑥))𝑧))
7271mpoeq3dva 7347 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔))) = (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑦(2nd ‘((1st𝐺)‘𝑥))𝑧)))
739, 24funcfn2 17595 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → (2nd ‘((1st𝐺)‘𝑥)) Fn ((Base‘𝐷) × (Base‘𝐷)))
74 fnov 7400 . . . . . . . . 9 ((2nd ‘((1st𝐺)‘𝑥)) Fn ((Base‘𝐷) × (Base‘𝐷)) ↔ (2nd ‘((1st𝐺)‘𝑥)) = (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑦(2nd ‘((1st𝐺)‘𝑥))𝑧)))
7573, 74sylib 217 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → (2nd ‘((1st𝐺)‘𝑥)) = (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑦(2nd ‘((1st𝐺)‘𝑥))𝑧)))
7672, 75eqtr4d 2783 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔))) = (2nd ‘((1st𝐺)‘𝑥)))
7727, 76opeq12d 4818 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩ = ⟨(1st ‘((1st𝐺)‘𝑥)), (2nd ‘((1st𝐺)‘𝑥))⟩)
78 1st2nd 7874 . . . . . . 7 ((Rel (𝐷 Func 𝐸) ∧ ((1st𝐺)‘𝑥) ∈ (𝐷 Func 𝐸)) → ((1st𝐺)‘𝑥) = ⟨(1st ‘((1st𝐺)‘𝑥)), (2nd ‘((1st𝐺)‘𝑥))⟩)
7915, 22, 78sylancr 587 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐺)‘𝑥) = ⟨(1st ‘((1st𝐺)‘𝑥)), (2nd ‘((1st𝐺)‘𝑥))⟩)
8077, 79eqtr4d 2783 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩ = ((1st𝐺)‘𝑥))
8180mpteq2dva 5179 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩) = (𝑥 ∈ (Base‘𝐶) ↦ ((1st𝐺)‘𝑥)))
8221feqmptd 6834 . . . 4 (𝜑 → (1st𝐺) = (𝑥 ∈ (Base‘𝐶) ↦ ((1st𝐺)‘𝑥)))
8381, 82eqtr4d 2783 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩) = (1st𝐺))
842ad3antrrr 727 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝐷 ∈ Cat)
854ad3antrrr 727 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝐸 ∈ Cat)
866ad3antrrr 727 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)))
87 simprl 768 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
8887ad2antrr 723 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝑥 ∈ (Base‘𝐶))
89 simpr 485 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝑧 ∈ (Base‘𝐷))
90 simprr 770 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
9190ad2antrr 723 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝑦 ∈ (Base‘𝐶))
92 simplr 766 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))
93 eqid 2740 . . . . . . . . . . . . 13 (Id‘𝐷) = (Id‘𝐷)
949, 34, 93, 84, 89catidcl 17402 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ((Id‘𝐷)‘𝑧) ∈ (𝑧(Hom ‘𝐷)𝑧))
951, 84, 85, 86, 8, 9, 88, 89, 33, 34, 91, 89, 92, 94uncf2 17966 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)) = ((((𝑥(2nd𝐺)𝑦)‘𝑔)‘𝑧)(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑧), ((1st ‘((1st𝐺)‘𝑥))‘𝑧)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑦))‘𝑧))((𝑧(2nd ‘((1st𝐺)‘𝑥))𝑧)‘((Id‘𝐷)‘𝑧))))
9622adantrr 714 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝐺)‘𝑥) ∈ (𝐷 Func 𝐸))
9796adantr 481 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((1st𝐺)‘𝑥) ∈ (𝐷 Func 𝐸))
9815, 97, 23sylancr 587 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (1st ‘((1st𝐺)‘𝑥))(𝐷 Func 𝐸)(2nd ‘((1st𝐺)‘𝑥)))
9998adantr 481 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (1st ‘((1st𝐺)‘𝑥))(𝐷 Func 𝐸)(2nd ‘((1st𝐺)‘𝑥)))
1009, 93, 48, 99, 89funcid 17596 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ((𝑧(2nd ‘((1st𝐺)‘𝑥))𝑧)‘((Id‘𝐷)‘𝑧)) = ((Id‘𝐸)‘((1st ‘((1st𝐺)‘𝑥))‘𝑧)))
101100oveq2d 7288 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ((((𝑥(2nd𝐺)𝑦)‘𝑔)‘𝑧)(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑧), ((1st ‘((1st𝐺)‘𝑥))‘𝑧)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑦))‘𝑧))((𝑧(2nd ‘((1st𝐺)‘𝑥))𝑧)‘((Id‘𝐷)‘𝑧))) = ((((𝑥(2nd𝐺)𝑦)‘𝑔)‘𝑧)(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑧), ((1st ‘((1st𝐺)‘𝑥))‘𝑧)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑦))‘𝑧))((Id‘𝐸)‘((1st ‘((1st𝐺)‘𝑥))‘𝑧))))
1029, 14, 98funcf1 17592 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (1st ‘((1st𝐺)‘𝑥)):(Base‘𝐷)⟶(Base‘𝐸))
103102ffvelrnda 6958 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ((1st ‘((1st𝐺)‘𝑥))‘𝑧) ∈ (Base‘𝐸))
10421ffvelrnda 6958 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (Base‘𝐶)) → ((1st𝐺)‘𝑦) ∈ (𝐷 Func 𝐸))
105104adantrl 713 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝐺)‘𝑦) ∈ (𝐷 Func 𝐸))
106105adantr 481 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((1st𝐺)‘𝑦) ∈ (𝐷 Func 𝐸))
107 1st2ndbr 7877 . . . . . . . . . . . . . . 15 ((Rel (𝐷 Func 𝐸) ∧ ((1st𝐺)‘𝑦) ∈ (𝐷 Func 𝐸)) → (1st ‘((1st𝐺)‘𝑦))(𝐷 Func 𝐸)(2nd ‘((1st𝐺)‘𝑦)))
10815, 106, 107sylancr 587 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (1st ‘((1st𝐺)‘𝑦))(𝐷 Func 𝐸)(2nd ‘((1st𝐺)‘𝑦)))
1099, 14, 108funcf1 17592 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (1st ‘((1st𝐺)‘𝑦)):(Base‘𝐷)⟶(Base‘𝐸))
110109ffvelrnda 6958 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ((1st ‘((1st𝐺)‘𝑦))‘𝑧) ∈ (Base‘𝐸))
111 eqid 2740 . . . . . . . . . . . . 13 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
11216, 111fuchom 17689 . . . . . . . . . . . . . . . 16 (𝐷 Nat 𝐸) = (Hom ‘(𝐷 FuncCat 𝐸))
11320ad3antrrr 727 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (1st𝐺)(𝐶 Func (𝐷 FuncCat 𝐸))(2nd𝐺))
1148, 33, 112, 113, 88, 91funcf2 17594 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑥(2nd𝐺)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐺)‘𝑥)(𝐷 Nat 𝐸)((1st𝐺)‘𝑦)))
115114, 92ffvelrnd 6959 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ((𝑥(2nd𝐺)𝑦)‘𝑔) ∈ (((1st𝐺)‘𝑥)(𝐷 Nat 𝐸)((1st𝐺)‘𝑦)))
116111, 115nat1st2nd 17678 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ((𝑥(2nd𝐺)𝑦)‘𝑔) ∈ (⟨(1st ‘((1st𝐺)‘𝑥)), (2nd ‘((1st𝐺)‘𝑥))⟩(𝐷 Nat 𝐸)⟨(1st ‘((1st𝐺)‘𝑦)), (2nd ‘((1st𝐺)‘𝑦))⟩))
117111, 116, 9, 58, 89natcl 17680 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (((𝑥(2nd𝐺)𝑦)‘𝑔)‘𝑧) ∈ (((1st ‘((1st𝐺)‘𝑥))‘𝑧)(Hom ‘𝐸)((1st ‘((1st𝐺)‘𝑦))‘𝑧)))
11814, 58, 48, 85, 103, 60, 110, 117catrid 17404 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ((((𝑥(2nd𝐺)𝑦)‘𝑔)‘𝑧)(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑧), ((1st ‘((1st𝐺)‘𝑥))‘𝑧)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑦))‘𝑧))((Id‘𝐸)‘((1st ‘((1st𝐺)‘𝑥))‘𝑧))) = (((𝑥(2nd𝐺)𝑦)‘𝑔)‘𝑧))
11995, 101, 1183eqtrd 2784 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)) = (((𝑥(2nd𝐺)𝑦)‘𝑔)‘𝑧))
120119mpteq2dva 5179 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))) = (𝑧 ∈ (Base‘𝐷) ↦ (((𝑥(2nd𝐺)𝑦)‘𝑔)‘𝑧)))
12120adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st𝐺)(𝐶 Func (𝐷 FuncCat 𝐸))(2nd𝐺))
1228, 33, 112, 121, 87, 90funcf2 17594 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐺)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐺)‘𝑥)(𝐷 Nat 𝐸)((1st𝐺)‘𝑦)))
123122ffvelrnda 6958 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd𝐺)𝑦)‘𝑔) ∈ (((1st𝐺)‘𝑥)(𝐷 Nat 𝐸)((1st𝐺)‘𝑦)))
124111, 123nat1st2nd 17678 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd𝐺)𝑦)‘𝑔) ∈ (⟨(1st ‘((1st𝐺)‘𝑥)), (2nd ‘((1st𝐺)‘𝑥))⟩(𝐷 Nat 𝐸)⟨(1st ‘((1st𝐺)‘𝑦)), (2nd ‘((1st𝐺)‘𝑦))⟩))
125111, 124, 9natfn 17681 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd𝐺)𝑦)‘𝑔) Fn (Base‘𝐷))
126 dffn5 6825 . . . . . . . . . 10 (((𝑥(2nd𝐺)𝑦)‘𝑔) Fn (Base‘𝐷) ↔ ((𝑥(2nd𝐺)𝑦)‘𝑔) = (𝑧 ∈ (Base‘𝐷) ↦ (((𝑥(2nd𝐺)𝑦)‘𝑔)‘𝑧)))
127125, 126sylib 217 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd𝐺)𝑦)‘𝑔) = (𝑧 ∈ (Base‘𝐷) ↦ (((𝑥(2nd𝐺)𝑦)‘𝑔)‘𝑧)))
128120, 127eqtr4d 2783 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))) = ((𝑥(2nd𝐺)𝑦)‘𝑔))
129128mpteq2dva 5179 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))) = (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((𝑥(2nd𝐺)𝑦)‘𝑔)))
130122feqmptd 6834 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐺)𝑦) = (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((𝑥(2nd𝐺)𝑦)‘𝑔)))
131129, 130eqtr4d 2783 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))) = (𝑥(2nd𝐺)𝑦))
1321313impb 1114 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))) = (𝑥(2nd𝐺)𝑦))
133132mpoeq3dva 7347 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd𝐺)𝑦)))
1348, 20funcfn2 17595 . . . . 5 (𝜑 → (2nd𝐺) Fn ((Base‘𝐶) × (Base‘𝐶)))
135 fnov 7400 . . . . 5 ((2nd𝐺) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ (2nd𝐺) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd𝐺)𝑦)))
136134, 135sylib 217 . . . 4 (𝜑 → (2nd𝐺) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd𝐺)𝑦)))
137133, 136eqtr4d 2783 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))))) = (2nd𝐺))
13883, 137opeq12d 4818 . 2 (𝜑 → ⟨(𝑥 ∈ (Base‘𝐶) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))⟩ = ⟨(1st𝐺), (2nd𝐺)⟩)
139 eqid 2740 . . 3 (⟨𝐶, 𝐷⟩ curryF 𝐹) = (⟨𝐶, 𝐷⟩ curryF 𝐹)
1401, 2, 4, 6uncfcl 17964 . . 3 (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
141139, 8, 40, 2, 140, 9, 34, 37, 33, 93curfval 17952 . 2 (𝜑 → (⟨𝐶, 𝐷⟩ curryF 𝐹) = ⟨(𝑥 ∈ (Base‘𝐶) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))⟩)
142 1st2nd 7874 . . 3 ((Rel (𝐶 Func (𝐷 FuncCat 𝐸)) ∧ 𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸))) → 𝐺 = ⟨(1st𝐺), (2nd𝐺)⟩)
14318, 6, 142sylancr 587 . 2 (𝜑𝐺 = ⟨(1st𝐺), (2nd𝐺)⟩)
144138, 141, 1433eqtr4d 2790 1 (𝜑 → (⟨𝐶, 𝐷⟩ curryF 𝐹) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110  cop 4573   class class class wbr 5079  cmpt 5162   × cxp 5588  ccom 5594  Rel wrel 5595   Fn wfn 6427  wf 6428  cfv 6432  (class class class)co 7272  cmpo 7274  1st c1st 7823  2nd c2nd 7824  ⟨“cs3 14566  Basecbs 16923  Hom chom 16984  compcco 16985  Catccat 17384  Idccid 17385   Func cfunc 17580   Nat cnat 17668   FuncCat cfuc 17669   curryF ccurf 17939   uncurryF cuncf 17940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583  ax-cnex 10938  ax-resscn 10939  ax-1cn 10940  ax-icn 10941  ax-addcl 10942  ax-addrcl 10943  ax-mulcl 10944  ax-mulrcl 10945  ax-mulcom 10946  ax-addass 10947  ax-mulass 10948  ax-distr 10949  ax-i2m1 10950  ax-1ne0 10951  ax-1rid 10952  ax-rnegex 10953  ax-rrecex 10954  ax-cnre 10955  ax-pre-lttri 10956  ax-pre-lttrn 10957  ax-pre-ltadd 10958  ax-pre-mulgt0 10959
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7229  df-ov 7275  df-oprab 7276  df-mpo 7277  df-om 7708  df-1st 7825  df-2nd 7826  df-frecs 8089  df-wrecs 8120  df-recs 8194  df-rdg 8233  df-1o 8289  df-er 8490  df-map 8609  df-ixp 8678  df-en 8726  df-dom 8727  df-sdom 8728  df-fin 8729  df-card 9708  df-pnf 11022  df-mnf 11023  df-xr 11024  df-ltxr 11025  df-le 11026  df-sub 11218  df-neg 11219  df-nn 11985  df-2 12047  df-3 12048  df-4 12049  df-5 12050  df-6 12051  df-7 12052  df-8 12053  df-9 12054  df-n0 12245  df-z 12331  df-dec 12449  df-uz 12594  df-fz 13251  df-fzo 13394  df-hash 14056  df-word 14229  df-concat 14285  df-s1 14312  df-s2 14572  df-s3 14573  df-struct 16859  df-slot 16894  df-ndx 16906  df-base 16924  df-hom 16997  df-cco 16998  df-cat 17388  df-cid 17389  df-func 17584  df-cofu 17586  df-nat 17670  df-fuc 17671  df-xpc 17900  df-1stf 17901  df-2ndf 17902  df-prf 17903  df-evlf 17942  df-curf 17943  df-uncf 17944
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator