Step | Hyp | Ref
| Expression |
1 | | uncfval.g |
. . . . . . . . . 10
⊢ 𝐹 = (〈“𝐶𝐷𝐸”〉 uncurryF
𝐺) |
2 | | uncfval.c |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐷 ∈ Cat) |
3 | 2 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝐷 ∈ Cat) |
4 | | uncfval.d |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐸 ∈ Cat) |
5 | 4 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝐸 ∈ Cat) |
6 | | uncfval.f |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸))) |
7 | 6 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸))) |
8 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Base‘𝐶) =
(Base‘𝐶) |
9 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Base‘𝐷) =
(Base‘𝐷) |
10 | | simplr 765 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝑥 ∈ (Base‘𝐶)) |
11 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝑦 ∈ (Base‘𝐷)) |
12 | 1, 3, 5, 7, 8, 9, 10, 11 | uncf1 17870 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → (𝑥(1st ‘𝐹)𝑦) = ((1st ‘((1st
‘𝐺)‘𝑥))‘𝑦)) |
13 | 12 | mpteq2dva 5170 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st ‘𝐹)𝑦)) = (𝑦 ∈ (Base‘𝐷) ↦ ((1st
‘((1st ‘𝐺)‘𝑥))‘𝑦))) |
14 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Base‘𝐸) =
(Base‘𝐸) |
15 | | relfunc 17493 |
. . . . . . . . . . 11
⊢ Rel
(𝐷 Func 𝐸) |
16 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸) |
17 | 16 | fucbas 17593 |
. . . . . . . . . . . . 13
⊢ (𝐷 Func 𝐸) = (Base‘(𝐷 FuncCat 𝐸)) |
18 | | relfunc 17493 |
. . . . . . . . . . . . . 14
⊢ Rel
(𝐶 Func (𝐷 FuncCat 𝐸)) |
19 | | 1st2ndbr 7856 |
. . . . . . . . . . . . . 14
⊢ ((Rel
(𝐶 Func (𝐷 FuncCat 𝐸)) ∧ 𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸))) → (1st ‘𝐺)(𝐶 Func (𝐷 FuncCat 𝐸))(2nd ‘𝐺)) |
20 | 18, 6, 19 | sylancr 586 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (1st
‘𝐺)(𝐶 Func (𝐷 FuncCat 𝐸))(2nd ‘𝐺)) |
21 | 8, 17, 20 | funcf1 17497 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1st
‘𝐺):(Base‘𝐶)⟶(𝐷 Func 𝐸)) |
22 | 21 | ffvelrnda 6943 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st ‘𝐺)‘𝑥) ∈ (𝐷 Func 𝐸)) |
23 | | 1st2ndbr 7856 |
. . . . . . . . . . 11
⊢ ((Rel
(𝐷 Func 𝐸) ∧ ((1st ‘𝐺)‘𝑥) ∈ (𝐷 Func 𝐸)) → (1st
‘((1st ‘𝐺)‘𝑥))(𝐷 Func 𝐸)(2nd ‘((1st
‘𝐺)‘𝑥))) |
24 | 15, 22, 23 | sylancr 586 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (1st
‘((1st ‘𝐺)‘𝑥))(𝐷 Func 𝐸)(2nd ‘((1st
‘𝐺)‘𝑥))) |
25 | 9, 14, 24 | funcf1 17497 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (1st
‘((1st ‘𝐺)‘𝑥)):(Base‘𝐷)⟶(Base‘𝐸)) |
26 | 25 | feqmptd 6819 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (1st
‘((1st ‘𝐺)‘𝑥)) = (𝑦 ∈ (Base‘𝐷) ↦ ((1st
‘((1st ‘𝐺)‘𝑥))‘𝑦))) |
27 | 13, 26 | eqtr4d 2781 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st ‘𝐹)𝑦)) = (1st ‘((1st
‘𝐺)‘𝑥))) |
28 | 2 | ad3antrrr 726 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝐷 ∈ Cat) |
29 | 4 | ad3antrrr 726 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝐸 ∈ Cat) |
30 | 6 | ad3antrrr 726 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸))) |
31 | | simpllr 772 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑥 ∈ (Base‘𝐶)) |
32 | | simplrl 773 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑦 ∈ (Base‘𝐷)) |
33 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
34 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
35 | | simprr 769 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → 𝑧 ∈ (Base‘𝐷)) |
36 | 35 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑧 ∈ (Base‘𝐷)) |
37 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢
(Id‘𝐶) =
(Id‘𝐶) |
38 | | funcrcl 17494 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)) → (𝐶 ∈ Cat ∧ (𝐷 FuncCat 𝐸) ∈ Cat)) |
39 | 6, 38 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐶 ∈ Cat ∧ (𝐷 FuncCat 𝐸) ∈ Cat)) |
40 | 39 | simpld 494 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐶 ∈ Cat) |
41 | 40 | ad3antrrr 726 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝐶 ∈ Cat) |
42 | 8, 33, 37, 41, 31 | catidcl 17308 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥)) |
43 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) |
44 | 1, 28, 29, 30, 8, 9, 31, 32, 33, 34, 31, 36, 42, 43 | uncf2 17871 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (((Id‘𝐶)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔) = ((((𝑥(2nd ‘𝐺)𝑥)‘((Id‘𝐶)‘𝑥))‘𝑧)(〈((1st
‘((1st ‘𝐺)‘𝑥))‘𝑦), ((1st ‘((1st
‘𝐺)‘𝑥))‘𝑧)〉(comp‘𝐸)((1st ‘((1st
‘𝐺)‘𝑥))‘𝑧))((𝑦(2nd ‘((1st
‘𝐺)‘𝑥))𝑧)‘𝑔))) |
45 | | eqid 2738 |
. . . . . . . . . . . . . . . . . 18
⊢
(Id‘(𝐷 FuncCat
𝐸)) = (Id‘(𝐷 FuncCat 𝐸)) |
46 | 20 | ad3antrrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (1st ‘𝐺)(𝐶 Func (𝐷 FuncCat 𝐸))(2nd ‘𝐺)) |
47 | 8, 37, 45, 46, 31 | funcid 17501 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((𝑥(2nd ‘𝐺)𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘(𝐷 FuncCat 𝐸))‘((1st ‘𝐺)‘𝑥))) |
48 | | eqid 2738 |
. . . . . . . . . . . . . . . . . 18
⊢
(Id‘𝐸) =
(Id‘𝐸) |
49 | 22 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((1st ‘𝐺)‘𝑥) ∈ (𝐷 Func 𝐸)) |
50 | 16, 45, 48, 49 | fucid 17605 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((Id‘(𝐷 FuncCat 𝐸))‘((1st ‘𝐺)‘𝑥)) = ((Id‘𝐸) ∘ (1st
‘((1st ‘𝐺)‘𝑥)))) |
51 | 47, 50 | eqtrd 2778 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((𝑥(2nd ‘𝐺)𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐸) ∘ (1st
‘((1st ‘𝐺)‘𝑥)))) |
52 | 51 | fveq1d 6758 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (((𝑥(2nd ‘𝐺)𝑥)‘((Id‘𝐶)‘𝑥))‘𝑧) = (((Id‘𝐸) ∘ (1st
‘((1st ‘𝐺)‘𝑥)))‘𝑧)) |
53 | 25 | ad2antrr 722 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (1st
‘((1st ‘𝐺)‘𝑥)):(Base‘𝐷)⟶(Base‘𝐸)) |
54 | | fvco3 6849 |
. . . . . . . . . . . . . . . 16
⊢
(((1st ‘((1st ‘𝐺)‘𝑥)):(Base‘𝐷)⟶(Base‘𝐸) ∧ 𝑧 ∈ (Base‘𝐷)) → (((Id‘𝐸) ∘ (1st
‘((1st ‘𝐺)‘𝑥)))‘𝑧) = ((Id‘𝐸)‘((1st
‘((1st ‘𝐺)‘𝑥))‘𝑧))) |
55 | 53, 36, 54 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (((Id‘𝐸) ∘ (1st
‘((1st ‘𝐺)‘𝑥)))‘𝑧) = ((Id‘𝐸)‘((1st
‘((1st ‘𝐺)‘𝑥))‘𝑧))) |
56 | 52, 55 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (((𝑥(2nd ‘𝐺)𝑥)‘((Id‘𝐶)‘𝑥))‘𝑧) = ((Id‘𝐸)‘((1st
‘((1st ‘𝐺)‘𝑥))‘𝑧))) |
57 | 56 | oveq1d 7270 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((((𝑥(2nd ‘𝐺)𝑥)‘((Id‘𝐶)‘𝑥))‘𝑧)(〈((1st
‘((1st ‘𝐺)‘𝑥))‘𝑦), ((1st ‘((1st
‘𝐺)‘𝑥))‘𝑧)〉(comp‘𝐸)((1st ‘((1st
‘𝐺)‘𝑥))‘𝑧))((𝑦(2nd ‘((1st
‘𝐺)‘𝑥))𝑧)‘𝑔)) = (((Id‘𝐸)‘((1st
‘((1st ‘𝐺)‘𝑥))‘𝑧))(〈((1st
‘((1st ‘𝐺)‘𝑥))‘𝑦), ((1st ‘((1st
‘𝐺)‘𝑥))‘𝑧)〉(comp‘𝐸)((1st ‘((1st
‘𝐺)‘𝑥))‘𝑧))((𝑦(2nd ‘((1st
‘𝐺)‘𝑥))𝑧)‘𝑔))) |
58 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ (Hom
‘𝐸) = (Hom
‘𝐸) |
59 | 53, 32 | ffvelrnd 6944 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((1st
‘((1st ‘𝐺)‘𝑥))‘𝑦) ∈ (Base‘𝐸)) |
60 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(comp‘𝐸) =
(comp‘𝐸) |
61 | 53, 36 | ffvelrnd 6944 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((1st
‘((1st ‘𝐺)‘𝑥))‘𝑧) ∈ (Base‘𝐸)) |
62 | 24 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (1st
‘((1st ‘𝐺)‘𝑥))(𝐷 Func 𝐸)(2nd ‘((1st
‘𝐺)‘𝑥))) |
63 | | simprl 767 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → 𝑦 ∈ (Base‘𝐷)) |
64 | 9, 34, 58, 62, 63, 35 | funcf2 17499 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑦(2nd ‘((1st
‘𝐺)‘𝑥))𝑧):(𝑦(Hom ‘𝐷)𝑧)⟶(((1st
‘((1st ‘𝐺)‘𝑥))‘𝑦)(Hom ‘𝐸)((1st ‘((1st
‘𝐺)‘𝑥))‘𝑧))) |
65 | 64 | ffvelrnda 6943 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((𝑦(2nd ‘((1st
‘𝐺)‘𝑥))𝑧)‘𝑔) ∈ (((1st
‘((1st ‘𝐺)‘𝑥))‘𝑦)(Hom ‘𝐸)((1st ‘((1st
‘𝐺)‘𝑥))‘𝑧))) |
66 | 14, 58, 48, 29, 59, 60, 61, 65 | catlid 17309 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (((Id‘𝐸)‘((1st
‘((1st ‘𝐺)‘𝑥))‘𝑧))(〈((1st
‘((1st ‘𝐺)‘𝑥))‘𝑦), ((1st ‘((1st
‘𝐺)‘𝑥))‘𝑧)〉(comp‘𝐸)((1st ‘((1st
‘𝐺)‘𝑥))‘𝑧))((𝑦(2nd ‘((1st
‘𝐺)‘𝑥))𝑧)‘𝑔)) = ((𝑦(2nd ‘((1st
‘𝐺)‘𝑥))𝑧)‘𝑔)) |
67 | 44, 57, 66 | 3eqtrd 2782 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (((Id‘𝐶)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔) = ((𝑦(2nd ‘((1st
‘𝐺)‘𝑥))𝑧)‘𝑔)) |
68 | 67 | mpteq2dva 5170 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)) = (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ ((𝑦(2nd ‘((1st
‘𝐺)‘𝑥))𝑧)‘𝑔))) |
69 | 64 | feqmptd 6819 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑦(2nd ‘((1st
‘𝐺)‘𝑥))𝑧) = (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ ((𝑦(2nd ‘((1st
‘𝐺)‘𝑥))𝑧)‘𝑔))) |
70 | 68, 69 | eqtr4d 2781 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)) = (𝑦(2nd ‘((1st
‘𝐺)‘𝑥))𝑧)) |
71 | 70 | 3impb 1113 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)) = (𝑦(2nd ‘((1st
‘𝐺)‘𝑥))𝑧)) |
72 | 71 | mpoeq3dva 7330 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔))) = (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑦(2nd ‘((1st
‘𝐺)‘𝑥))𝑧))) |
73 | 9, 24 | funcfn2 17500 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (2nd
‘((1st ‘𝐺)‘𝑥)) Fn ((Base‘𝐷) × (Base‘𝐷))) |
74 | | fnov 7383 |
. . . . . . . . 9
⊢
((2nd ‘((1st ‘𝐺)‘𝑥)) Fn ((Base‘𝐷) × (Base‘𝐷)) ↔ (2nd
‘((1st ‘𝐺)‘𝑥)) = (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑦(2nd ‘((1st
‘𝐺)‘𝑥))𝑧))) |
75 | 73, 74 | sylib 217 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (2nd
‘((1st ‘𝐺)‘𝑥)) = (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑦(2nd ‘((1st
‘𝐺)‘𝑥))𝑧))) |
76 | 72, 75 | eqtr4d 2781 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔))) = (2nd ‘((1st
‘𝐺)‘𝑥))) |
77 | 27, 76 | opeq12d 4809 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 〈(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉 = 〈(1st
‘((1st ‘𝐺)‘𝑥)), (2nd ‘((1st
‘𝐺)‘𝑥))〉) |
78 | | 1st2nd 7853 |
. . . . . . 7
⊢ ((Rel
(𝐷 Func 𝐸) ∧ ((1st ‘𝐺)‘𝑥) ∈ (𝐷 Func 𝐸)) → ((1st ‘𝐺)‘𝑥) = 〈(1st
‘((1st ‘𝐺)‘𝑥)), (2nd ‘((1st
‘𝐺)‘𝑥))〉) |
79 | 15, 22, 78 | sylancr 586 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st ‘𝐺)‘𝑥) = 〈(1st
‘((1st ‘𝐺)‘𝑥)), (2nd ‘((1st
‘𝐺)‘𝑥))〉) |
80 | 77, 79 | eqtr4d 2781 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 〈(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉 = ((1st ‘𝐺)‘𝑥)) |
81 | 80 | mpteq2dva 5170 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ 〈(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉) = (𝑥 ∈ (Base‘𝐶) ↦ ((1st ‘𝐺)‘𝑥))) |
82 | 21 | feqmptd 6819 |
. . . 4
⊢ (𝜑 → (1st
‘𝐺) = (𝑥 ∈ (Base‘𝐶) ↦ ((1st
‘𝐺)‘𝑥))) |
83 | 81, 82 | eqtr4d 2781 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ 〈(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉) = (1st ‘𝐺)) |
84 | 2 | ad3antrrr 726 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝐷 ∈ Cat) |
85 | 4 | ad3antrrr 726 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝐸 ∈ Cat) |
86 | 6 | ad3antrrr 726 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸))) |
87 | | simprl 767 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶)) |
88 | 87 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝑥 ∈ (Base‘𝐶)) |
89 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝑧 ∈ (Base‘𝐷)) |
90 | | simprr 769 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶)) |
91 | 90 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝑦 ∈ (Base‘𝐶)) |
92 | | simplr 765 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) |
93 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(Id‘𝐷) =
(Id‘𝐷) |
94 | 9, 34, 93, 84, 89 | catidcl 17308 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ((Id‘𝐷)‘𝑧) ∈ (𝑧(Hom ‘𝐷)𝑧)) |
95 | 1, 84, 85, 86, 8, 9, 88, 89, 33, 34, 91, 89, 92, 94 | uncf2 17871 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)((Id‘𝐷)‘𝑧)) = ((((𝑥(2nd ‘𝐺)𝑦)‘𝑔)‘𝑧)(〈((1st
‘((1st ‘𝐺)‘𝑥))‘𝑧), ((1st ‘((1st
‘𝐺)‘𝑥))‘𝑧)〉(comp‘𝐸)((1st ‘((1st
‘𝐺)‘𝑦))‘𝑧))((𝑧(2nd ‘((1st
‘𝐺)‘𝑥))𝑧)‘((Id‘𝐷)‘𝑧)))) |
96 | 22 | adantrr 713 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st ‘𝐺)‘𝑥) ∈ (𝐷 Func 𝐸)) |
97 | 96 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((1st ‘𝐺)‘𝑥) ∈ (𝐷 Func 𝐸)) |
98 | 15, 97, 23 | sylancr 586 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (1st
‘((1st ‘𝐺)‘𝑥))(𝐷 Func 𝐸)(2nd ‘((1st
‘𝐺)‘𝑥))) |
99 | 98 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (1st
‘((1st ‘𝐺)‘𝑥))(𝐷 Func 𝐸)(2nd ‘((1st
‘𝐺)‘𝑥))) |
100 | 9, 93, 48, 99, 89 | funcid 17501 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ((𝑧(2nd ‘((1st
‘𝐺)‘𝑥))𝑧)‘((Id‘𝐷)‘𝑧)) = ((Id‘𝐸)‘((1st
‘((1st ‘𝐺)‘𝑥))‘𝑧))) |
101 | 100 | oveq2d 7271 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ((((𝑥(2nd ‘𝐺)𝑦)‘𝑔)‘𝑧)(〈((1st
‘((1st ‘𝐺)‘𝑥))‘𝑧), ((1st ‘((1st
‘𝐺)‘𝑥))‘𝑧)〉(comp‘𝐸)((1st ‘((1st
‘𝐺)‘𝑦))‘𝑧))((𝑧(2nd ‘((1st
‘𝐺)‘𝑥))𝑧)‘((Id‘𝐷)‘𝑧))) = ((((𝑥(2nd ‘𝐺)𝑦)‘𝑔)‘𝑧)(〈((1st
‘((1st ‘𝐺)‘𝑥))‘𝑧), ((1st ‘((1st
‘𝐺)‘𝑥))‘𝑧)〉(comp‘𝐸)((1st ‘((1st
‘𝐺)‘𝑦))‘𝑧))((Id‘𝐸)‘((1st
‘((1st ‘𝐺)‘𝑥))‘𝑧)))) |
102 | 9, 14, 98 | funcf1 17497 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (1st
‘((1st ‘𝐺)‘𝑥)):(Base‘𝐷)⟶(Base‘𝐸)) |
103 | 102 | ffvelrnda 6943 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ((1st
‘((1st ‘𝐺)‘𝑥))‘𝑧) ∈ (Base‘𝐸)) |
104 | 21 | ffvelrnda 6943 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐶)) → ((1st ‘𝐺)‘𝑦) ∈ (𝐷 Func 𝐸)) |
105 | 104 | adantrl 712 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st ‘𝐺)‘𝑦) ∈ (𝐷 Func 𝐸)) |
106 | 105 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((1st ‘𝐺)‘𝑦) ∈ (𝐷 Func 𝐸)) |
107 | | 1st2ndbr 7856 |
. . . . . . . . . . . . . . 15
⊢ ((Rel
(𝐷 Func 𝐸) ∧ ((1st ‘𝐺)‘𝑦) ∈ (𝐷 Func 𝐸)) → (1st
‘((1st ‘𝐺)‘𝑦))(𝐷 Func 𝐸)(2nd ‘((1st
‘𝐺)‘𝑦))) |
108 | 15, 106, 107 | sylancr 586 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (1st
‘((1st ‘𝐺)‘𝑦))(𝐷 Func 𝐸)(2nd ‘((1st
‘𝐺)‘𝑦))) |
109 | 9, 14, 108 | funcf1 17497 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (1st
‘((1st ‘𝐺)‘𝑦)):(Base‘𝐷)⟶(Base‘𝐸)) |
110 | 109 | ffvelrnda 6943 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ((1st
‘((1st ‘𝐺)‘𝑦))‘𝑧) ∈ (Base‘𝐸)) |
111 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸) |
112 | 16, 111 | fuchom 17594 |
. . . . . . . . . . . . . . . 16
⊢ (𝐷 Nat 𝐸) = (Hom ‘(𝐷 FuncCat 𝐸)) |
113 | 20 | ad3antrrr 726 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (1st ‘𝐺)(𝐶 Func (𝐷 FuncCat 𝐸))(2nd ‘𝐺)) |
114 | 8, 33, 112, 113, 88, 91 | funcf2 17499 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑥(2nd ‘𝐺)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st ‘𝐺)‘𝑥)(𝐷 Nat 𝐸)((1st ‘𝐺)‘𝑦))) |
115 | 114, 92 | ffvelrnd 6944 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ((𝑥(2nd ‘𝐺)𝑦)‘𝑔) ∈ (((1st ‘𝐺)‘𝑥)(𝐷 Nat 𝐸)((1st ‘𝐺)‘𝑦))) |
116 | 111, 115 | nat1st2nd 17583 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ((𝑥(2nd ‘𝐺)𝑦)‘𝑔) ∈ (〈(1st
‘((1st ‘𝐺)‘𝑥)), (2nd ‘((1st
‘𝐺)‘𝑥))〉(𝐷 Nat 𝐸)〈(1st
‘((1st ‘𝐺)‘𝑦)), (2nd ‘((1st
‘𝐺)‘𝑦))〉)) |
117 | 111, 116,
9, 58, 89 | natcl 17585 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (((𝑥(2nd ‘𝐺)𝑦)‘𝑔)‘𝑧) ∈ (((1st
‘((1st ‘𝐺)‘𝑥))‘𝑧)(Hom ‘𝐸)((1st ‘((1st
‘𝐺)‘𝑦))‘𝑧))) |
118 | 14, 58, 48, 85, 103, 60, 110, 117 | catrid 17310 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ((((𝑥(2nd ‘𝐺)𝑦)‘𝑔)‘𝑧)(〈((1st
‘((1st ‘𝐺)‘𝑥))‘𝑧), ((1st ‘((1st
‘𝐺)‘𝑥))‘𝑧)〉(comp‘𝐸)((1st ‘((1st
‘𝐺)‘𝑦))‘𝑧))((Id‘𝐸)‘((1st
‘((1st ‘𝐺)‘𝑥))‘𝑧))) = (((𝑥(2nd ‘𝐺)𝑦)‘𝑔)‘𝑧)) |
119 | 95, 101, 118 | 3eqtrd 2782 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)((Id‘𝐷)‘𝑧)) = (((𝑥(2nd ‘𝐺)𝑦)‘𝑔)‘𝑧)) |
120 | 119 | mpteq2dva 5170 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)((Id‘𝐷)‘𝑧))) = (𝑧 ∈ (Base‘𝐷) ↦ (((𝑥(2nd ‘𝐺)𝑦)‘𝑔)‘𝑧))) |
121 | 20 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st ‘𝐺)(𝐶 Func (𝐷 FuncCat 𝐸))(2nd ‘𝐺)) |
122 | 8, 33, 112, 121, 87, 90 | funcf2 17499 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘𝐺)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st ‘𝐺)‘𝑥)(𝐷 Nat 𝐸)((1st ‘𝐺)‘𝑦))) |
123 | 122 | ffvelrnda 6943 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘𝐺)𝑦)‘𝑔) ∈ (((1st ‘𝐺)‘𝑥)(𝐷 Nat 𝐸)((1st ‘𝐺)‘𝑦))) |
124 | 111, 123 | nat1st2nd 17583 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘𝐺)𝑦)‘𝑔) ∈ (〈(1st
‘((1st ‘𝐺)‘𝑥)), (2nd ‘((1st
‘𝐺)‘𝑥))〉(𝐷 Nat 𝐸)〈(1st
‘((1st ‘𝐺)‘𝑦)), (2nd ‘((1st
‘𝐺)‘𝑦))〉)) |
125 | 111, 124,
9 | natfn 17586 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘𝐺)𝑦)‘𝑔) Fn (Base‘𝐷)) |
126 | | dffn5 6810 |
. . . . . . . . . 10
⊢ (((𝑥(2nd ‘𝐺)𝑦)‘𝑔) Fn (Base‘𝐷) ↔ ((𝑥(2nd ‘𝐺)𝑦)‘𝑔) = (𝑧 ∈ (Base‘𝐷) ↦ (((𝑥(2nd ‘𝐺)𝑦)‘𝑔)‘𝑧))) |
127 | 125, 126 | sylib 217 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘𝐺)𝑦)‘𝑔) = (𝑧 ∈ (Base‘𝐷) ↦ (((𝑥(2nd ‘𝐺)𝑦)‘𝑔)‘𝑧))) |
128 | 120, 127 | eqtr4d 2781 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)((Id‘𝐷)‘𝑧))) = ((𝑥(2nd ‘𝐺)𝑦)‘𝑔)) |
129 | 128 | mpteq2dva 5170 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)((Id‘𝐷)‘𝑧)))) = (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((𝑥(2nd ‘𝐺)𝑦)‘𝑔))) |
130 | 122 | feqmptd 6819 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘𝐺)𝑦) = (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((𝑥(2nd ‘𝐺)𝑦)‘𝑔))) |
131 | 129, 130 | eqtr4d 2781 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)((Id‘𝐷)‘𝑧)))) = (𝑥(2nd ‘𝐺)𝑦)) |
132 | 131 | 3impb 1113 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)((Id‘𝐷)‘𝑧)))) = (𝑥(2nd ‘𝐺)𝑦)) |
133 | 132 | mpoeq3dva 7330 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)((Id‘𝐷)‘𝑧))))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd ‘𝐺)𝑦))) |
134 | 8, 20 | funcfn2 17500 |
. . . . 5
⊢ (𝜑 → (2nd
‘𝐺) Fn
((Base‘𝐶) ×
(Base‘𝐶))) |
135 | | fnov 7383 |
. . . . 5
⊢
((2nd ‘𝐺) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ (2nd ‘𝐺) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd ‘𝐺)𝑦))) |
136 | 134, 135 | sylib 217 |
. . . 4
⊢ (𝜑 → (2nd
‘𝐺) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd ‘𝐺)𝑦))) |
137 | 133, 136 | eqtr4d 2781 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)((Id‘𝐷)‘𝑧))))) = (2nd ‘𝐺)) |
138 | 83, 137 | opeq12d 4809 |
. 2
⊢ (𝜑 → 〈(𝑥 ∈ (Base‘𝐶) ↦ 〈(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)((Id‘𝐷)‘𝑧)))))〉 = 〈(1st
‘𝐺), (2nd
‘𝐺)〉) |
139 | | eqid 2738 |
. . 3
⊢
(〈𝐶, 𝐷〉 curryF
𝐹) = (〈𝐶, 𝐷〉 curryF 𝐹) |
140 | 1, 2, 4, 6 | uncfcl 17869 |
. . 3
⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) |
141 | 139, 8, 40, 2, 140, 9, 34, 37, 33, 93 | curfval 17857 |
. 2
⊢ (𝜑 → (〈𝐶, 𝐷〉 curryF 𝐹) = 〈(𝑥 ∈ (Base‘𝐶) ↦ 〈(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)((Id‘𝐷)‘𝑧)))))〉) |
142 | | 1st2nd 7853 |
. . 3
⊢ ((Rel
(𝐶 Func (𝐷 FuncCat 𝐸)) ∧ 𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸))) → 𝐺 = 〈(1st ‘𝐺), (2nd ‘𝐺)〉) |
143 | 18, 6, 142 | sylancr 586 |
. 2
⊢ (𝜑 → 𝐺 = 〈(1st ‘𝐺), (2nd ‘𝐺)〉) |
144 | 138, 141,
143 | 3eqtr4d 2788 |
1
⊢ (𝜑 → (〈𝐶, 𝐷〉 curryF 𝐹) = 𝐺) |