MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curfuncf Structured version   Visualization version   GIF version

Theorem curfuncf 17956
Description: Cancellation of curry with uncurry. (Contributed by Mario Carneiro, 13-Jan-2017.)
Hypotheses
Ref Expression
uncfval.g 𝐹 = (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)
uncfval.c (𝜑𝐷 ∈ Cat)
uncfval.d (𝜑𝐸 ∈ Cat)
uncfval.f (𝜑𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)))
Assertion
Ref Expression
curfuncf (𝜑 → (⟨𝐶, 𝐷⟩ curryF 𝐹) = 𝐺)

Proof of Theorem curfuncf
Dummy variables 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uncfval.g . . . . . . . . . 10 𝐹 = (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)
2 uncfval.c . . . . . . . . . . 11 (𝜑𝐷 ∈ Cat)
32ad2antrr 723 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝐷 ∈ Cat)
4 uncfval.d . . . . . . . . . . 11 (𝜑𝐸 ∈ Cat)
54ad2antrr 723 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝐸 ∈ Cat)
6 uncfval.f . . . . . . . . . . 11 (𝜑𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)))
76ad2antrr 723 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)))
8 eqid 2738 . . . . . . . . . 10 (Base‘𝐶) = (Base‘𝐶)
9 eqid 2738 . . . . . . . . . 10 (Base‘𝐷) = (Base‘𝐷)
10 simplr 766 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝑥 ∈ (Base‘𝐶))
11 simpr 485 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝑦 ∈ (Base‘𝐷))
121, 3, 5, 7, 8, 9, 10, 11uncf1 17954 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → (𝑥(1st𝐹)𝑦) = ((1st ‘((1st𝐺)‘𝑥))‘𝑦))
1312mpteq2dva 5174 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)) = (𝑦 ∈ (Base‘𝐷) ↦ ((1st ‘((1st𝐺)‘𝑥))‘𝑦)))
14 eqid 2738 . . . . . . . . . 10 (Base‘𝐸) = (Base‘𝐸)
15 relfunc 17577 . . . . . . . . . . 11 Rel (𝐷 Func 𝐸)
16 eqid 2738 . . . . . . . . . . . . . 14 (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸)
1716fucbas 17677 . . . . . . . . . . . . 13 (𝐷 Func 𝐸) = (Base‘(𝐷 FuncCat 𝐸))
18 relfunc 17577 . . . . . . . . . . . . . 14 Rel (𝐶 Func (𝐷 FuncCat 𝐸))
19 1st2ndbr 7883 . . . . . . . . . . . . . 14 ((Rel (𝐶 Func (𝐷 FuncCat 𝐸)) ∧ 𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸))) → (1st𝐺)(𝐶 Func (𝐷 FuncCat 𝐸))(2nd𝐺))
2018, 6, 19sylancr 587 . . . . . . . . . . . . 13 (𝜑 → (1st𝐺)(𝐶 Func (𝐷 FuncCat 𝐸))(2nd𝐺))
218, 17, 20funcf1 17581 . . . . . . . . . . . 12 (𝜑 → (1st𝐺):(Base‘𝐶)⟶(𝐷 Func 𝐸))
2221ffvelrnda 6961 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐺)‘𝑥) ∈ (𝐷 Func 𝐸))
23 1st2ndbr 7883 . . . . . . . . . . 11 ((Rel (𝐷 Func 𝐸) ∧ ((1st𝐺)‘𝑥) ∈ (𝐷 Func 𝐸)) → (1st ‘((1st𝐺)‘𝑥))(𝐷 Func 𝐸)(2nd ‘((1st𝐺)‘𝑥)))
2415, 22, 23sylancr 587 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝐶)) → (1st ‘((1st𝐺)‘𝑥))(𝐷 Func 𝐸)(2nd ‘((1st𝐺)‘𝑥)))
259, 14, 24funcf1 17581 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → (1st ‘((1st𝐺)‘𝑥)):(Base‘𝐷)⟶(Base‘𝐸))
2625feqmptd 6837 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → (1st ‘((1st𝐺)‘𝑥)) = (𝑦 ∈ (Base‘𝐷) ↦ ((1st ‘((1st𝐺)‘𝑥))‘𝑦)))
2713, 26eqtr4d 2781 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)) = (1st ‘((1st𝐺)‘𝑥)))
282ad3antrrr 727 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝐷 ∈ Cat)
294ad3antrrr 727 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝐸 ∈ Cat)
306ad3antrrr 727 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)))
31 simpllr 773 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑥 ∈ (Base‘𝐶))
32 simplrl 774 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑦 ∈ (Base‘𝐷))
33 eqid 2738 . . . . . . . . . . . . . 14 (Hom ‘𝐶) = (Hom ‘𝐶)
34 eqid 2738 . . . . . . . . . . . . . 14 (Hom ‘𝐷) = (Hom ‘𝐷)
35 simprr 770 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → 𝑧 ∈ (Base‘𝐷))
3635adantr 481 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑧 ∈ (Base‘𝐷))
37 eqid 2738 . . . . . . . . . . . . . . 15 (Id‘𝐶) = (Id‘𝐶)
38 funcrcl 17578 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)) → (𝐶 ∈ Cat ∧ (𝐷 FuncCat 𝐸) ∈ Cat))
396, 38syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐶 ∈ Cat ∧ (𝐷 FuncCat 𝐸) ∈ Cat))
4039simpld 495 . . . . . . . . . . . . . . . 16 (𝜑𝐶 ∈ Cat)
4140ad3antrrr 727 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝐶 ∈ Cat)
428, 33, 37, 41, 31catidcl 17391 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥))
43 simpr 485 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))
441, 28, 29, 30, 8, 9, 31, 32, 33, 34, 31, 36, 42, 43uncf2 17955 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔) = ((((𝑥(2nd𝐺)𝑥)‘((Id‘𝐶)‘𝑥))‘𝑧)(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑦), ((1st ‘((1st𝐺)‘𝑥))‘𝑧)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑥))‘𝑧))((𝑦(2nd ‘((1st𝐺)‘𝑥))𝑧)‘𝑔)))
45 eqid 2738 . . . . . . . . . . . . . . . . . 18 (Id‘(𝐷 FuncCat 𝐸)) = (Id‘(𝐷 FuncCat 𝐸))
4620ad3antrrr 727 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (1st𝐺)(𝐶 Func (𝐷 FuncCat 𝐸))(2nd𝐺))
478, 37, 45, 46, 31funcid 17585 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((𝑥(2nd𝐺)𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘(𝐷 FuncCat 𝐸))‘((1st𝐺)‘𝑥)))
48 eqid 2738 . . . . . . . . . . . . . . . . . 18 (Id‘𝐸) = (Id‘𝐸)
4922ad2antrr 723 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((1st𝐺)‘𝑥) ∈ (𝐷 Func 𝐸))
5016, 45, 48, 49fucid 17689 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((Id‘(𝐷 FuncCat 𝐸))‘((1st𝐺)‘𝑥)) = ((Id‘𝐸) ∘ (1st ‘((1st𝐺)‘𝑥))))
5147, 50eqtrd 2778 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((𝑥(2nd𝐺)𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐸) ∘ (1st ‘((1st𝐺)‘𝑥))))
5251fveq1d 6776 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (((𝑥(2nd𝐺)𝑥)‘((Id‘𝐶)‘𝑥))‘𝑧) = (((Id‘𝐸) ∘ (1st ‘((1st𝐺)‘𝑥)))‘𝑧))
5325ad2antrr 723 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (1st ‘((1st𝐺)‘𝑥)):(Base‘𝐷)⟶(Base‘𝐸))
54 fvco3 6867 . . . . . . . . . . . . . . . 16 (((1st ‘((1st𝐺)‘𝑥)):(Base‘𝐷)⟶(Base‘𝐸) ∧ 𝑧 ∈ (Base‘𝐷)) → (((Id‘𝐸) ∘ (1st ‘((1st𝐺)‘𝑥)))‘𝑧) = ((Id‘𝐸)‘((1st ‘((1st𝐺)‘𝑥))‘𝑧)))
5553, 36, 54syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (((Id‘𝐸) ∘ (1st ‘((1st𝐺)‘𝑥)))‘𝑧) = ((Id‘𝐸)‘((1st ‘((1st𝐺)‘𝑥))‘𝑧)))
5652, 55eqtrd 2778 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (((𝑥(2nd𝐺)𝑥)‘((Id‘𝐶)‘𝑥))‘𝑧) = ((Id‘𝐸)‘((1st ‘((1st𝐺)‘𝑥))‘𝑧)))
5756oveq1d 7290 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((((𝑥(2nd𝐺)𝑥)‘((Id‘𝐶)‘𝑥))‘𝑧)(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑦), ((1st ‘((1st𝐺)‘𝑥))‘𝑧)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑥))‘𝑧))((𝑦(2nd ‘((1st𝐺)‘𝑥))𝑧)‘𝑔)) = (((Id‘𝐸)‘((1st ‘((1st𝐺)‘𝑥))‘𝑧))(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑦), ((1st ‘((1st𝐺)‘𝑥))‘𝑧)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑥))‘𝑧))((𝑦(2nd ‘((1st𝐺)‘𝑥))𝑧)‘𝑔)))
58 eqid 2738 . . . . . . . . . . . . . 14 (Hom ‘𝐸) = (Hom ‘𝐸)
5953, 32ffvelrnd 6962 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((1st ‘((1st𝐺)‘𝑥))‘𝑦) ∈ (Base‘𝐸))
60 eqid 2738 . . . . . . . . . . . . . 14 (comp‘𝐸) = (comp‘𝐸)
6153, 36ffvelrnd 6962 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((1st ‘((1st𝐺)‘𝑥))‘𝑧) ∈ (Base‘𝐸))
6224adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (1st ‘((1st𝐺)‘𝑥))(𝐷 Func 𝐸)(2nd ‘((1st𝐺)‘𝑥)))
63 simprl 768 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → 𝑦 ∈ (Base‘𝐷))
649, 34, 58, 62, 63, 35funcf2 17583 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑦(2nd ‘((1st𝐺)‘𝑥))𝑧):(𝑦(Hom ‘𝐷)𝑧)⟶(((1st ‘((1st𝐺)‘𝑥))‘𝑦)(Hom ‘𝐸)((1st ‘((1st𝐺)‘𝑥))‘𝑧)))
6564ffvelrnda 6961 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((𝑦(2nd ‘((1st𝐺)‘𝑥))𝑧)‘𝑔) ∈ (((1st ‘((1st𝐺)‘𝑥))‘𝑦)(Hom ‘𝐸)((1st ‘((1st𝐺)‘𝑥))‘𝑧)))
6614, 58, 48, 29, 59, 60, 61, 65catlid 17392 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (((Id‘𝐸)‘((1st ‘((1st𝐺)‘𝑥))‘𝑧))(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑦), ((1st ‘((1st𝐺)‘𝑥))‘𝑧)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑥))‘𝑧))((𝑦(2nd ‘((1st𝐺)‘𝑥))𝑧)‘𝑔)) = ((𝑦(2nd ‘((1st𝐺)‘𝑥))𝑧)‘𝑔))
6744, 57, 663eqtrd 2782 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔) = ((𝑦(2nd ‘((1st𝐺)‘𝑥))𝑧)‘𝑔))
6867mpteq2dva 5174 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)) = (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ ((𝑦(2nd ‘((1st𝐺)‘𝑥))𝑧)‘𝑔)))
6964feqmptd 6837 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑦(2nd ‘((1st𝐺)‘𝑥))𝑧) = (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ ((𝑦(2nd ‘((1st𝐺)‘𝑥))𝑧)‘𝑔)))
7068, 69eqtr4d 2781 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)) = (𝑦(2nd ‘((1st𝐺)‘𝑥))𝑧))
71703impb 1114 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)) = (𝑦(2nd ‘((1st𝐺)‘𝑥))𝑧))
7271mpoeq3dva 7352 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔))) = (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑦(2nd ‘((1st𝐺)‘𝑥))𝑧)))
739, 24funcfn2 17584 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → (2nd ‘((1st𝐺)‘𝑥)) Fn ((Base‘𝐷) × (Base‘𝐷)))
74 fnov 7405 . . . . . . . . 9 ((2nd ‘((1st𝐺)‘𝑥)) Fn ((Base‘𝐷) × (Base‘𝐷)) ↔ (2nd ‘((1st𝐺)‘𝑥)) = (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑦(2nd ‘((1st𝐺)‘𝑥))𝑧)))
7573, 74sylib 217 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → (2nd ‘((1st𝐺)‘𝑥)) = (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑦(2nd ‘((1st𝐺)‘𝑥))𝑧)))
7672, 75eqtr4d 2781 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔))) = (2nd ‘((1st𝐺)‘𝑥)))
7727, 76opeq12d 4812 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩ = ⟨(1st ‘((1st𝐺)‘𝑥)), (2nd ‘((1st𝐺)‘𝑥))⟩)
78 1st2nd 7880 . . . . . . 7 ((Rel (𝐷 Func 𝐸) ∧ ((1st𝐺)‘𝑥) ∈ (𝐷 Func 𝐸)) → ((1st𝐺)‘𝑥) = ⟨(1st ‘((1st𝐺)‘𝑥)), (2nd ‘((1st𝐺)‘𝑥))⟩)
7915, 22, 78sylancr 587 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐺)‘𝑥) = ⟨(1st ‘((1st𝐺)‘𝑥)), (2nd ‘((1st𝐺)‘𝑥))⟩)
8077, 79eqtr4d 2781 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩ = ((1st𝐺)‘𝑥))
8180mpteq2dva 5174 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩) = (𝑥 ∈ (Base‘𝐶) ↦ ((1st𝐺)‘𝑥)))
8221feqmptd 6837 . . . 4 (𝜑 → (1st𝐺) = (𝑥 ∈ (Base‘𝐶) ↦ ((1st𝐺)‘𝑥)))
8381, 82eqtr4d 2781 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩) = (1st𝐺))
842ad3antrrr 727 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝐷 ∈ Cat)
854ad3antrrr 727 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝐸 ∈ Cat)
866ad3antrrr 727 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)))
87 simprl 768 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
8887ad2antrr 723 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝑥 ∈ (Base‘𝐶))
89 simpr 485 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝑧 ∈ (Base‘𝐷))
90 simprr 770 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
9190ad2antrr 723 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝑦 ∈ (Base‘𝐶))
92 simplr 766 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))
93 eqid 2738 . . . . . . . . . . . . 13 (Id‘𝐷) = (Id‘𝐷)
949, 34, 93, 84, 89catidcl 17391 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ((Id‘𝐷)‘𝑧) ∈ (𝑧(Hom ‘𝐷)𝑧))
951, 84, 85, 86, 8, 9, 88, 89, 33, 34, 91, 89, 92, 94uncf2 17955 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)) = ((((𝑥(2nd𝐺)𝑦)‘𝑔)‘𝑧)(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑧), ((1st ‘((1st𝐺)‘𝑥))‘𝑧)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑦))‘𝑧))((𝑧(2nd ‘((1st𝐺)‘𝑥))𝑧)‘((Id‘𝐷)‘𝑧))))
9622adantrr 714 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝐺)‘𝑥) ∈ (𝐷 Func 𝐸))
9796adantr 481 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((1st𝐺)‘𝑥) ∈ (𝐷 Func 𝐸))
9815, 97, 23sylancr 587 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (1st ‘((1st𝐺)‘𝑥))(𝐷 Func 𝐸)(2nd ‘((1st𝐺)‘𝑥)))
9998adantr 481 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (1st ‘((1st𝐺)‘𝑥))(𝐷 Func 𝐸)(2nd ‘((1st𝐺)‘𝑥)))
1009, 93, 48, 99, 89funcid 17585 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ((𝑧(2nd ‘((1st𝐺)‘𝑥))𝑧)‘((Id‘𝐷)‘𝑧)) = ((Id‘𝐸)‘((1st ‘((1st𝐺)‘𝑥))‘𝑧)))
101100oveq2d 7291 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ((((𝑥(2nd𝐺)𝑦)‘𝑔)‘𝑧)(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑧), ((1st ‘((1st𝐺)‘𝑥))‘𝑧)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑦))‘𝑧))((𝑧(2nd ‘((1st𝐺)‘𝑥))𝑧)‘((Id‘𝐷)‘𝑧))) = ((((𝑥(2nd𝐺)𝑦)‘𝑔)‘𝑧)(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑧), ((1st ‘((1st𝐺)‘𝑥))‘𝑧)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑦))‘𝑧))((Id‘𝐸)‘((1st ‘((1st𝐺)‘𝑥))‘𝑧))))
1029, 14, 98funcf1 17581 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (1st ‘((1st𝐺)‘𝑥)):(Base‘𝐷)⟶(Base‘𝐸))
103102ffvelrnda 6961 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ((1st ‘((1st𝐺)‘𝑥))‘𝑧) ∈ (Base‘𝐸))
10421ffvelrnda 6961 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (Base‘𝐶)) → ((1st𝐺)‘𝑦) ∈ (𝐷 Func 𝐸))
105104adantrl 713 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝐺)‘𝑦) ∈ (𝐷 Func 𝐸))
106105adantr 481 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((1st𝐺)‘𝑦) ∈ (𝐷 Func 𝐸))
107 1st2ndbr 7883 . . . . . . . . . . . . . . 15 ((Rel (𝐷 Func 𝐸) ∧ ((1st𝐺)‘𝑦) ∈ (𝐷 Func 𝐸)) → (1st ‘((1st𝐺)‘𝑦))(𝐷 Func 𝐸)(2nd ‘((1st𝐺)‘𝑦)))
10815, 106, 107sylancr 587 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (1st ‘((1st𝐺)‘𝑦))(𝐷 Func 𝐸)(2nd ‘((1st𝐺)‘𝑦)))
1099, 14, 108funcf1 17581 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (1st ‘((1st𝐺)‘𝑦)):(Base‘𝐷)⟶(Base‘𝐸))
110109ffvelrnda 6961 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ((1st ‘((1st𝐺)‘𝑦))‘𝑧) ∈ (Base‘𝐸))
111 eqid 2738 . . . . . . . . . . . . 13 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
11216, 111fuchom 17678 . . . . . . . . . . . . . . . 16 (𝐷 Nat 𝐸) = (Hom ‘(𝐷 FuncCat 𝐸))
11320ad3antrrr 727 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (1st𝐺)(𝐶 Func (𝐷 FuncCat 𝐸))(2nd𝐺))
1148, 33, 112, 113, 88, 91funcf2 17583 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑥(2nd𝐺)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐺)‘𝑥)(𝐷 Nat 𝐸)((1st𝐺)‘𝑦)))
115114, 92ffvelrnd 6962 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ((𝑥(2nd𝐺)𝑦)‘𝑔) ∈ (((1st𝐺)‘𝑥)(𝐷 Nat 𝐸)((1st𝐺)‘𝑦)))
116111, 115nat1st2nd 17667 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ((𝑥(2nd𝐺)𝑦)‘𝑔) ∈ (⟨(1st ‘((1st𝐺)‘𝑥)), (2nd ‘((1st𝐺)‘𝑥))⟩(𝐷 Nat 𝐸)⟨(1st ‘((1st𝐺)‘𝑦)), (2nd ‘((1st𝐺)‘𝑦))⟩))
117111, 116, 9, 58, 89natcl 17669 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (((𝑥(2nd𝐺)𝑦)‘𝑔)‘𝑧) ∈ (((1st ‘((1st𝐺)‘𝑥))‘𝑧)(Hom ‘𝐸)((1st ‘((1st𝐺)‘𝑦))‘𝑧)))
11814, 58, 48, 85, 103, 60, 110, 117catrid 17393 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ((((𝑥(2nd𝐺)𝑦)‘𝑔)‘𝑧)(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑧), ((1st ‘((1st𝐺)‘𝑥))‘𝑧)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑦))‘𝑧))((Id‘𝐸)‘((1st ‘((1st𝐺)‘𝑥))‘𝑧))) = (((𝑥(2nd𝐺)𝑦)‘𝑔)‘𝑧))
11995, 101, 1183eqtrd 2782 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)) = (((𝑥(2nd𝐺)𝑦)‘𝑔)‘𝑧))
120119mpteq2dva 5174 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))) = (𝑧 ∈ (Base‘𝐷) ↦ (((𝑥(2nd𝐺)𝑦)‘𝑔)‘𝑧)))
12120adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st𝐺)(𝐶 Func (𝐷 FuncCat 𝐸))(2nd𝐺))
1228, 33, 112, 121, 87, 90funcf2 17583 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐺)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐺)‘𝑥)(𝐷 Nat 𝐸)((1st𝐺)‘𝑦)))
123122ffvelrnda 6961 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd𝐺)𝑦)‘𝑔) ∈ (((1st𝐺)‘𝑥)(𝐷 Nat 𝐸)((1st𝐺)‘𝑦)))
124111, 123nat1st2nd 17667 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd𝐺)𝑦)‘𝑔) ∈ (⟨(1st ‘((1st𝐺)‘𝑥)), (2nd ‘((1st𝐺)‘𝑥))⟩(𝐷 Nat 𝐸)⟨(1st ‘((1st𝐺)‘𝑦)), (2nd ‘((1st𝐺)‘𝑦))⟩))
125111, 124, 9natfn 17670 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd𝐺)𝑦)‘𝑔) Fn (Base‘𝐷))
126 dffn5 6828 . . . . . . . . . 10 (((𝑥(2nd𝐺)𝑦)‘𝑔) Fn (Base‘𝐷) ↔ ((𝑥(2nd𝐺)𝑦)‘𝑔) = (𝑧 ∈ (Base‘𝐷) ↦ (((𝑥(2nd𝐺)𝑦)‘𝑔)‘𝑧)))
127125, 126sylib 217 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd𝐺)𝑦)‘𝑔) = (𝑧 ∈ (Base‘𝐷) ↦ (((𝑥(2nd𝐺)𝑦)‘𝑔)‘𝑧)))
128120, 127eqtr4d 2781 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))) = ((𝑥(2nd𝐺)𝑦)‘𝑔))
129128mpteq2dva 5174 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))) = (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((𝑥(2nd𝐺)𝑦)‘𝑔)))
130122feqmptd 6837 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐺)𝑦) = (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((𝑥(2nd𝐺)𝑦)‘𝑔)))
131129, 130eqtr4d 2781 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))) = (𝑥(2nd𝐺)𝑦))
1321313impb 1114 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))) = (𝑥(2nd𝐺)𝑦))
133132mpoeq3dva 7352 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd𝐺)𝑦)))
1348, 20funcfn2 17584 . . . . 5 (𝜑 → (2nd𝐺) Fn ((Base‘𝐶) × (Base‘𝐶)))
135 fnov 7405 . . . . 5 ((2nd𝐺) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ (2nd𝐺) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd𝐺)𝑦)))
136134, 135sylib 217 . . . 4 (𝜑 → (2nd𝐺) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd𝐺)𝑦)))
137133, 136eqtr4d 2781 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))))) = (2nd𝐺))
13883, 137opeq12d 4812 . 2 (𝜑 → ⟨(𝑥 ∈ (Base‘𝐶) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))⟩ = ⟨(1st𝐺), (2nd𝐺)⟩)
139 eqid 2738 . . 3 (⟨𝐶, 𝐷⟩ curryF 𝐹) = (⟨𝐶, 𝐷⟩ curryF 𝐹)
1401, 2, 4, 6uncfcl 17953 . . 3 (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
141139, 8, 40, 2, 140, 9, 34, 37, 33, 93curfval 17941 . 2 (𝜑 → (⟨𝐶, 𝐷⟩ curryF 𝐹) = ⟨(𝑥 ∈ (Base‘𝐶) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))⟩)
142 1st2nd 7880 . . 3 ((Rel (𝐶 Func (𝐷 FuncCat 𝐸)) ∧ 𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸))) → 𝐺 = ⟨(1st𝐺), (2nd𝐺)⟩)
14318, 6, 142sylancr 587 . 2 (𝜑𝐺 = ⟨(1st𝐺), (2nd𝐺)⟩)
144138, 141, 1433eqtr4d 2788 1 (𝜑 → (⟨𝐶, 𝐷⟩ curryF 𝐹) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  cop 4567   class class class wbr 5074  cmpt 5157   × cxp 5587  ccom 5593  Rel wrel 5594   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  cmpo 7277  1st c1st 7829  2nd c2nd 7830  ⟨“cs3 14555  Basecbs 16912  Hom chom 16973  compcco 16974  Catccat 17373  Idccid 17374   Func cfunc 17569   Nat cnat 17657   FuncCat cfuc 17658   curryF ccurf 17928   uncurryF cuncf 17929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-concat 14274  df-s1 14301  df-s2 14561  df-s3 14562  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-hom 16986  df-cco 16987  df-cat 17377  df-cid 17378  df-func 17573  df-cofu 17575  df-nat 17659  df-fuc 17660  df-xpc 17889  df-1stf 17890  df-2ndf 17891  df-prf 17892  df-evlf 17931  df-curf 17932  df-uncf 17933
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator