Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalemkehl Structured version   Visualization version   GIF version

Theorem dalemkehl 39617
Description: Lemma for dath 39730. Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012.)
Hypothesis
Ref Expression
dalema.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
Assertion
Ref Expression
dalemkehl (𝜑𝐾 ∈ HL)

Proof of Theorem dalemkehl
StepHypRef Expression
1 dalema.ph . 2 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
2 simp11l 1285 . 2 ((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))) → 𝐾 ∈ HL)
31, 2sylbi 217 1 (𝜑𝐾 ∈ HL)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wcel 2109   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  HLchlt 39343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  dalemkelat  39618  dalemkeop  39619  dalempjqeb  39639  dalemsjteb  39640  dalemtjueb  39641  dalemqrprot  39642  dalempnes  39645  dalemqnet  39646  dalempjsen  39647  dalemply  39648  dalemsly  39649  dalemswapyz  39650  dalemrot  39651  dalemrotyz  39652  dalem1  39653  dalemcea  39654  dalem2  39655  dalemdea  39656  dalem3  39658  dalem4  39659  dalem5  39661  dalem-cly  39665  dalem9  39666  dalem11  39668  dalem12  39669  dalem13  39670  dalem15  39672  dalem16  39673  dalem17  39674  dalem18  39675  dalem19  39676  dalemswapyzps  39684  dalemcjden  39686  dalem21  39688  dalem22  39689  dalem23  39690  dalem24  39691  dalem25  39692  dalem27  39693  dalem28  39694  dalem38  39704  dalem39  39705  dalem41  39707  dalem42  39708  dalem43  39709  dalem44  39710  dalem45  39711  dalem51  39717  dalem52  39718  dalem54  39720  dalem55  39721  dalem56  39722  dalem57  39723  dalem58  39724  dalem59  39725  dalem60  39726
  Copyright terms: Public domain W3C validator