Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalemkehl Structured version   Visualization version   GIF version

Theorem dalemkehl 39580
Description: Lemma for dath 39693. Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012.)
Hypothesis
Ref Expression
dalema.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
Assertion
Ref Expression
dalemkehl (𝜑𝐾 ∈ HL)

Proof of Theorem dalemkehl
StepHypRef Expression
1 dalema.ph . 2 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
2 simp11l 1284 . 2 ((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))) → 𝐾 ∈ HL)
31, 2sylbi 217 1 (𝜑𝐾 ∈ HL)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087  wcel 2108   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  HLchlt 39306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  dalemkelat  39581  dalemkeop  39582  dalempjqeb  39602  dalemsjteb  39603  dalemtjueb  39604  dalemqrprot  39605  dalempnes  39608  dalemqnet  39609  dalempjsen  39610  dalemply  39611  dalemsly  39612  dalemswapyz  39613  dalemrot  39614  dalemrotyz  39615  dalem1  39616  dalemcea  39617  dalem2  39618  dalemdea  39619  dalem3  39621  dalem4  39622  dalem5  39624  dalem-cly  39628  dalem9  39629  dalem11  39631  dalem12  39632  dalem13  39633  dalem15  39635  dalem16  39636  dalem17  39637  dalem18  39638  dalem19  39639  dalemswapyzps  39647  dalemcjden  39649  dalem21  39651  dalem22  39652  dalem23  39653  dalem24  39654  dalem25  39655  dalem27  39656  dalem28  39657  dalem38  39667  dalem39  39668  dalem41  39670  dalem42  39671  dalem43  39672  dalem44  39673  dalem45  39674  dalem51  39680  dalem52  39681  dalem54  39683  dalem55  39684  dalem56  39685  dalem57  39686  dalem58  39687  dalem59  39688  dalem60  39689
  Copyright terms: Public domain W3C validator