Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalemkehl Structured version   Visualization version   GIF version

Theorem dalemkehl 37633
Description: Lemma for dath 37746. Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012.)
Hypothesis
Ref Expression
dalema.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
Assertion
Ref Expression
dalemkehl (𝜑𝐾 ∈ HL)

Proof of Theorem dalemkehl
StepHypRef Expression
1 dalema.ph . 2 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
2 simp11l 1283 . 2 ((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))) → 𝐾 ∈ HL)
31, 2sylbi 216 1 (𝜑𝐾 ∈ HL)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086  wcel 2110   class class class wbr 5079  cfv 6432  (class class class)co 7271  Basecbs 16910  HLchlt 37360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  dalemkelat  37634  dalemkeop  37635  dalempjqeb  37655  dalemsjteb  37656  dalemtjueb  37657  dalemqrprot  37658  dalempnes  37661  dalemqnet  37662  dalempjsen  37663  dalemply  37664  dalemsly  37665  dalemswapyz  37666  dalemrot  37667  dalemrotyz  37668  dalem1  37669  dalemcea  37670  dalem2  37671  dalemdea  37672  dalem3  37674  dalem4  37675  dalem5  37677  dalem-cly  37681  dalem9  37682  dalem11  37684  dalem12  37685  dalem13  37686  dalem15  37688  dalem16  37689  dalem17  37690  dalem18  37691  dalem19  37692  dalemswapyzps  37700  dalemcjden  37702  dalem21  37704  dalem22  37705  dalem23  37706  dalem24  37707  dalem25  37708  dalem27  37709  dalem28  37710  dalem38  37720  dalem39  37721  dalem41  37723  dalem42  37724  dalem43  37725  dalem44  37726  dalem45  37727  dalem51  37733  dalem52  37734  dalem54  37736  dalem55  37737  dalem56  37738  dalem57  37739  dalem58  37740  dalem59  37741  dalem60  37742
  Copyright terms: Public domain W3C validator