Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem11 Structured version   Visualization version   GIF version

Theorem dalem11 36846
 Description: Lemma for dath 36908. Analogue of dalem10 36845 for 𝐸. (Contributed by NM, 23-Jul-2012.)
Hypotheses
Ref Expression
dalema.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalemc.l = (le‘𝐾)
dalemc.j = (join‘𝐾)
dalemc.a 𝐴 = (Atoms‘𝐾)
dalem11.m = (meet‘𝐾)
dalem11.o 𝑂 = (LPlanes‘𝐾)
dalem11.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem11.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem11.x 𝑋 = (𝑌 𝑍)
dalem11.e 𝐸 = ((𝑄 𝑅) (𝑇 𝑈))
Assertion
Ref Expression
dalem11 (𝜑𝐸 𝑋)

Proof of Theorem dalem11
StepHypRef Expression
1 dalema.ph . . . 4 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
2 dalemc.l . . . 4 = (le‘𝐾)
3 dalemc.j . . . 4 = (join‘𝐾)
4 dalemc.a . . . 4 𝐴 = (Atoms‘𝐾)
5 dalem11.y . . . 4 𝑌 = ((𝑃 𝑄) 𝑅)
6 dalem11.z . . . 4 𝑍 = ((𝑆 𝑇) 𝑈)
71, 2, 3, 4, 5, 6dalemrot 36829 . . 3 (𝜑 → (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑄𝐴𝑅𝐴𝑃𝐴) ∧ (𝑇𝐴𝑈𝐴𝑆𝐴)) ∧ (((𝑄 𝑅) 𝑃) ∈ 𝑂 ∧ ((𝑇 𝑈) 𝑆) ∈ 𝑂) ∧ ((¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃) ∧ ¬ 𝐶 (𝑃 𝑄)) ∧ (¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆) ∧ ¬ 𝐶 (𝑆 𝑇)) ∧ (𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈) ∧ 𝐶 (𝑃 𝑆)))))
8 biid 263 . . . 4 ((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑄𝐴𝑅𝐴𝑃𝐴) ∧ (𝑇𝐴𝑈𝐴𝑆𝐴)) ∧ (((𝑄 𝑅) 𝑃) ∈ 𝑂 ∧ ((𝑇 𝑈) 𝑆) ∈ 𝑂) ∧ ((¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃) ∧ ¬ 𝐶 (𝑃 𝑄)) ∧ (¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆) ∧ ¬ 𝐶 (𝑆 𝑇)) ∧ (𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈) ∧ 𝐶 (𝑃 𝑆)))) ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑄𝐴𝑅𝐴𝑃𝐴) ∧ (𝑇𝐴𝑈𝐴𝑆𝐴)) ∧ (((𝑄 𝑅) 𝑃) ∈ 𝑂 ∧ ((𝑇 𝑈) 𝑆) ∈ 𝑂) ∧ ((¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃) ∧ ¬ 𝐶 (𝑃 𝑄)) ∧ (¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆) ∧ ¬ 𝐶 (𝑆 𝑇)) ∧ (𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈) ∧ 𝐶 (𝑃 𝑆)))))
9 dalem11.m . . . 4 = (meet‘𝐾)
10 dalem11.o . . . 4 𝑂 = (LPlanes‘𝐾)
11 eqid 2820 . . . 4 ((𝑄 𝑅) 𝑃) = ((𝑄 𝑅) 𝑃)
12 eqid 2820 . . . 4 ((𝑇 𝑈) 𝑆) = ((𝑇 𝑈) 𝑆)
13 eqid 2820 . . . 4 (((𝑄 𝑅) 𝑃) ((𝑇 𝑈) 𝑆)) = (((𝑄 𝑅) 𝑃) ((𝑇 𝑈) 𝑆))
14 dalem11.e . . . 4 𝐸 = ((𝑄 𝑅) (𝑇 𝑈))
158, 2, 3, 4, 9, 10, 11, 12, 13, 14dalem10 36845 . . 3 ((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑄𝐴𝑅𝐴𝑃𝐴) ∧ (𝑇𝐴𝑈𝐴𝑆𝐴)) ∧ (((𝑄 𝑅) 𝑃) ∈ 𝑂 ∧ ((𝑇 𝑈) 𝑆) ∈ 𝑂) ∧ ((¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃) ∧ ¬ 𝐶 (𝑃 𝑄)) ∧ (¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆) ∧ ¬ 𝐶 (𝑆 𝑇)) ∧ (𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈) ∧ 𝐶 (𝑃 𝑆)))) → 𝐸 (((𝑄 𝑅) 𝑃) ((𝑇 𝑈) 𝑆)))
167, 15syl 17 . 2 (𝜑𝐸 (((𝑄 𝑅) 𝑃) ((𝑇 𝑈) 𝑆)))
17 dalem11.x . . 3 𝑋 = (𝑌 𝑍)
181, 3, 4dalemqrprot 36820 . . . . 5 (𝜑 → ((𝑄 𝑅) 𝑃) = ((𝑃 𝑄) 𝑅))
1918, 5syl6reqr 2874 . . . 4 (𝜑𝑌 = ((𝑄 𝑅) 𝑃))
201dalemkehl 36795 . . . . . 6 (𝜑𝐾 ∈ HL)
211dalemtea 36802 . . . . . 6 (𝜑𝑇𝐴)
221dalemuea 36803 . . . . . 6 (𝜑𝑈𝐴)
231dalemsea 36801 . . . . . 6 (𝜑𝑆𝐴)
243, 4hlatjrot 36545 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑇𝐴𝑈𝐴𝑆𝐴)) → ((𝑇 𝑈) 𝑆) = ((𝑆 𝑇) 𝑈))
2520, 21, 22, 23, 24syl13anc 1368 . . . . 5 (𝜑 → ((𝑇 𝑈) 𝑆) = ((𝑆 𝑇) 𝑈))
2625, 6syl6reqr 2874 . . . 4 (𝜑𝑍 = ((𝑇 𝑈) 𝑆))
2719, 26oveq12d 7151 . . 3 (𝜑 → (𝑌 𝑍) = (((𝑄 𝑅) 𝑃) ((𝑇 𝑈) 𝑆)))
2817, 27syl5eq 2867 . 2 (𝜑𝑋 = (((𝑄 𝑅) 𝑃) ((𝑇 𝑈) 𝑆)))
2916, 28breqtrrd 5070 1 (𝜑𝐸 𝑋)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 208   ∧ wa 398   ∧ w3a 1083   = wceq 1537   ∈ wcel 2114   class class class wbr 5042  ‘cfv 6331  (class class class)co 7133  Basecbs 16462  lecple 16551  joincjn 17533  meetcmee 17534  Atomscatm 36435  HLchlt 36522  LPlanesclpl 36664 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-ral 3130  df-rex 3131  df-reu 3132  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-op 4550  df-uni 4815  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5436  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-proset 17517  df-poset 17535  df-lub 17563  df-glb 17564  df-join 17565  df-meet 17566  df-lat 17635  df-ats 36439  df-atl 36470  df-cvlat 36494  df-hlat 36523  df-lplanes 36671 This theorem is referenced by:  dalem12  36847  dalem16  36851
 Copyright terms: Public domain W3C validator