Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem3 Structured version   Visualization version   GIF version

Theorem dalem3 36331
Description: Lemma for dalemdnee 36333. (Contributed by NM, 10-Aug-2012.)
Hypotheses
Ref Expression
dalema.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalemc.l = (le‘𝐾)
dalemc.j = (join‘𝐾)
dalemc.a 𝐴 = (Atoms‘𝐾)
dalem3.m = (meet‘𝐾)
dalem3.o 𝑂 = (LPlanes‘𝐾)
dalem3.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem3.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem3.d 𝐷 = ((𝑃 𝑄) (𝑆 𝑇))
dalem3.e 𝐸 = ((𝑄 𝑅) (𝑇 𝑈))
Assertion
Ref Expression
dalem3 ((𝜑𝐷𝑄) → 𝐷𝐸)

Proof of Theorem dalem3
StepHypRef Expression
1 dalema.ph . . . . 5 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
21dalemkehl 36290 . . . 4 (𝜑𝐾 ∈ HL)
31dalempea 36293 . . . 4 (𝜑𝑃𝐴)
41dalemqea 36294 . . . 4 (𝜑𝑄𝐴)
51dalemrea 36295 . . . 4 (𝜑𝑅𝐴)
61dalemyeo 36299 . . . 4 (𝜑𝑌𝑂)
7 dalemc.l . . . . 5 = (le‘𝐾)
8 dalemc.j . . . . 5 = (join‘𝐾)
9 dalemc.a . . . . 5 𝐴 = (Atoms‘𝐾)
10 dalem3.o . . . . 5 𝑂 = (LPlanes‘𝐾)
11 dalem3.y . . . . 5 𝑌 = ((𝑃 𝑄) 𝑅)
127, 8, 9, 10, 11lplnric 36219 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑌𝑂) → ¬ 𝑅 (𝑃 𝑄))
132, 3, 4, 5, 6, 12syl131anc 1376 . . 3 (𝜑 → ¬ 𝑅 (𝑃 𝑄))
1413adantr 481 . 2 ((𝜑𝐷𝑄) → ¬ 𝑅 (𝑃 𝑄))
15 dalem3.e . . . . . . 7 𝐸 = ((𝑄 𝑅) (𝑇 𝑈))
161dalemkelat 36291 . . . . . . . 8 (𝜑𝐾 ∈ Lat)
17 eqid 2795 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
1817, 8, 9hlatjcl 36034 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) ∈ (Base‘𝐾))
192, 4, 5, 18syl3anc 1364 . . . . . . . 8 (𝜑 → (𝑄 𝑅) ∈ (Base‘𝐾))
201, 8, 9dalemtjueb 36314 . . . . . . . 8 (𝜑 → (𝑇 𝑈) ∈ (Base‘𝐾))
21 dalem3.m . . . . . . . . 9 = (meet‘𝐾)
2217, 7, 21latmle1 17515 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ (𝑇 𝑈) ∈ (Base‘𝐾)) → ((𝑄 𝑅) (𝑇 𝑈)) (𝑄 𝑅))
2316, 19, 20, 22syl3anc 1364 . . . . . . 7 (𝜑 → ((𝑄 𝑅) (𝑇 𝑈)) (𝑄 𝑅))
2415, 23eqbrtrid 4997 . . . . . 6 (𝜑𝐸 (𝑄 𝑅))
25 breq1 4965 . . . . . 6 (𝐷 = 𝐸 → (𝐷 (𝑄 𝑅) ↔ 𝐸 (𝑄 𝑅)))
2624, 25syl5ibrcom 248 . . . . 5 (𝜑 → (𝐷 = 𝐸𝐷 (𝑄 𝑅)))
2726adantr 481 . . . 4 ((𝜑𝐷𝑄) → (𝐷 = 𝐸𝐷 (𝑄 𝑅)))
282adantr 481 . . . . 5 ((𝜑𝐷𝑄) → 𝐾 ∈ HL)
29 dalem3.z . . . . . . 7 𝑍 = ((𝑆 𝑇) 𝑈)
30 dalem3.d . . . . . . 7 𝐷 = ((𝑃 𝑄) (𝑆 𝑇))
311, 7, 8, 9, 21, 10, 11, 29, 30dalemdea 36329 . . . . . 6 (𝜑𝐷𝐴)
3231adantr 481 . . . . 5 ((𝜑𝐷𝑄) → 𝐷𝐴)
335adantr 481 . . . . 5 ((𝜑𝐷𝑄) → 𝑅𝐴)
344adantr 481 . . . . 5 ((𝜑𝐷𝑄) → 𝑄𝐴)
35 simpr 485 . . . . 5 ((𝜑𝐷𝑄) → 𝐷𝑄)
367, 8, 9hlatexch1 36062 . . . . 5 ((𝐾 ∈ HL ∧ (𝐷𝐴𝑅𝐴𝑄𝐴) ∧ 𝐷𝑄) → (𝐷 (𝑄 𝑅) → 𝑅 (𝑄 𝐷)))
3728, 32, 33, 34, 35, 36syl131anc 1376 . . . 4 ((𝜑𝐷𝑄) → (𝐷 (𝑄 𝑅) → 𝑅 (𝑄 𝐷)))
387, 8, 9hlatlej2 36043 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝑄 (𝑃 𝑄))
392, 3, 4, 38syl3anc 1364 . . . . . . 7 (𝜑𝑄 (𝑃 𝑄))
401, 8, 9dalempjqeb 36312 . . . . . . . . 9 (𝜑 → (𝑃 𝑄) ∈ (Base‘𝐾))
411, 8, 9dalemsjteb 36313 . . . . . . . . 9 (𝜑 → (𝑆 𝑇) ∈ (Base‘𝐾))
4217, 7, 21latmle1 17515 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝑆 𝑇) ∈ (Base‘𝐾)) → ((𝑃 𝑄) (𝑆 𝑇)) (𝑃 𝑄))
4316, 40, 41, 42syl3anc 1364 . . . . . . . 8 (𝜑 → ((𝑃 𝑄) (𝑆 𝑇)) (𝑃 𝑄))
4430, 43eqbrtrid 4997 . . . . . . 7 (𝜑𝐷 (𝑃 𝑄))
451, 9dalemqeb 36307 . . . . . . . 8 (𝜑𝑄 ∈ (Base‘𝐾))
4617, 9atbase 35956 . . . . . . . . 9 (𝐷𝐴𝐷 ∈ (Base‘𝐾))
4731, 46syl 17 . . . . . . . 8 (𝜑𝐷 ∈ (Base‘𝐾))
4817, 7, 8latjle12 17501 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝐷 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → ((𝑄 (𝑃 𝑄) ∧ 𝐷 (𝑃 𝑄)) ↔ (𝑄 𝐷) (𝑃 𝑄)))
4916, 45, 47, 40, 48syl13anc 1365 . . . . . . 7 (𝜑 → ((𝑄 (𝑃 𝑄) ∧ 𝐷 (𝑃 𝑄)) ↔ (𝑄 𝐷) (𝑃 𝑄)))
5039, 44, 49mpbi2and 708 . . . . . 6 (𝜑 → (𝑄 𝐷) (𝑃 𝑄))
511, 9dalemreb 36308 . . . . . . 7 (𝜑𝑅 ∈ (Base‘𝐾))
5217, 8, 9hlatjcl 36034 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑄𝐴𝐷𝐴) → (𝑄 𝐷) ∈ (Base‘𝐾))
532, 4, 31, 52syl3anc 1364 . . . . . . 7 (𝜑 → (𝑄 𝐷) ∈ (Base‘𝐾))
5417, 7lattr 17495 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Base‘𝐾) ∧ (𝑄 𝐷) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → ((𝑅 (𝑄 𝐷) ∧ (𝑄 𝐷) (𝑃 𝑄)) → 𝑅 (𝑃 𝑄)))
5516, 51, 53, 40, 54syl13anc 1365 . . . . . 6 (𝜑 → ((𝑅 (𝑄 𝐷) ∧ (𝑄 𝐷) (𝑃 𝑄)) → 𝑅 (𝑃 𝑄)))
5650, 55mpan2d 690 . . . . 5 (𝜑 → (𝑅 (𝑄 𝐷) → 𝑅 (𝑃 𝑄)))
5756adantr 481 . . . 4 ((𝜑𝐷𝑄) → (𝑅 (𝑄 𝐷) → 𝑅 (𝑃 𝑄)))
5827, 37, 573syld 60 . . 3 ((𝜑𝐷𝑄) → (𝐷 = 𝐸𝑅 (𝑃 𝑄)))
5958necon3bd 2998 . 2 ((𝜑𝐷𝑄) → (¬ 𝑅 (𝑃 𝑄) → 𝐷𝐸))
6014, 59mpd 15 1 ((𝜑𝐷𝑄) → 𝐷𝐸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1080   = wceq 1522  wcel 2081  wne 2984   class class class wbr 4962  cfv 6225  (class class class)co 7016  Basecbs 16312  lecple 16401  joincjn 17383  meetcmee 17384  Latclat 17484  Atomscatm 35930  HLchlt 36017  LPlanesclpl 36159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-id 5348  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-proset 17367  df-poset 17385  df-plt 17397  df-lub 17413  df-glb 17414  df-join 17415  df-meet 17416  df-p0 17478  df-lat 17485  df-clat 17547  df-oposet 35843  df-ol 35845  df-oml 35846  df-covers 35933  df-ats 35934  df-atl 35965  df-cvlat 35989  df-hlat 36018  df-llines 36165  df-lplanes 36166
This theorem is referenced by:  dalem4  36332  dalemdnee  36333
  Copyright terms: Public domain W3C validator