Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem3 Structured version   Visualization version   GIF version

Theorem dalem3 36794
Description: Lemma for dalemdnee 36796. (Contributed by NM, 10-Aug-2012.)
Hypotheses
Ref Expression
dalema.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalemc.l = (le‘𝐾)
dalemc.j = (join‘𝐾)
dalemc.a 𝐴 = (Atoms‘𝐾)
dalem3.m = (meet‘𝐾)
dalem3.o 𝑂 = (LPlanes‘𝐾)
dalem3.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem3.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem3.d 𝐷 = ((𝑃 𝑄) (𝑆 𝑇))
dalem3.e 𝐸 = ((𝑄 𝑅) (𝑇 𝑈))
Assertion
Ref Expression
dalem3 ((𝜑𝐷𝑄) → 𝐷𝐸)

Proof of Theorem dalem3
StepHypRef Expression
1 dalema.ph . . . . 5 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
21dalemkehl 36753 . . . 4 (𝜑𝐾 ∈ HL)
31dalempea 36756 . . . 4 (𝜑𝑃𝐴)
41dalemqea 36757 . . . 4 (𝜑𝑄𝐴)
51dalemrea 36758 . . . 4 (𝜑𝑅𝐴)
61dalemyeo 36762 . . . 4 (𝜑𝑌𝑂)
7 dalemc.l . . . . 5 = (le‘𝐾)
8 dalemc.j . . . . 5 = (join‘𝐾)
9 dalemc.a . . . . 5 𝐴 = (Atoms‘𝐾)
10 dalem3.o . . . . 5 𝑂 = (LPlanes‘𝐾)
11 dalem3.y . . . . 5 𝑌 = ((𝑃 𝑄) 𝑅)
127, 8, 9, 10, 11lplnric 36682 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑌𝑂) → ¬ 𝑅 (𝑃 𝑄))
132, 3, 4, 5, 6, 12syl131anc 1379 . . 3 (𝜑 → ¬ 𝑅 (𝑃 𝑄))
1413adantr 483 . 2 ((𝜑𝐷𝑄) → ¬ 𝑅 (𝑃 𝑄))
15 dalem3.e . . . . . . 7 𝐸 = ((𝑄 𝑅) (𝑇 𝑈))
161dalemkelat 36754 . . . . . . . 8 (𝜑𝐾 ∈ Lat)
17 eqid 2821 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
1817, 8, 9hlatjcl 36497 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) ∈ (Base‘𝐾))
192, 4, 5, 18syl3anc 1367 . . . . . . . 8 (𝜑 → (𝑄 𝑅) ∈ (Base‘𝐾))
201, 8, 9dalemtjueb 36777 . . . . . . . 8 (𝜑 → (𝑇 𝑈) ∈ (Base‘𝐾))
21 dalem3.m . . . . . . . . 9 = (meet‘𝐾)
2217, 7, 21latmle1 17680 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ (𝑇 𝑈) ∈ (Base‘𝐾)) → ((𝑄 𝑅) (𝑇 𝑈)) (𝑄 𝑅))
2316, 19, 20, 22syl3anc 1367 . . . . . . 7 (𝜑 → ((𝑄 𝑅) (𝑇 𝑈)) (𝑄 𝑅))
2415, 23eqbrtrid 5093 . . . . . 6 (𝜑𝐸 (𝑄 𝑅))
25 breq1 5061 . . . . . 6 (𝐷 = 𝐸 → (𝐷 (𝑄 𝑅) ↔ 𝐸 (𝑄 𝑅)))
2624, 25syl5ibrcom 249 . . . . 5 (𝜑 → (𝐷 = 𝐸𝐷 (𝑄 𝑅)))
2726adantr 483 . . . 4 ((𝜑𝐷𝑄) → (𝐷 = 𝐸𝐷 (𝑄 𝑅)))
282adantr 483 . . . . 5 ((𝜑𝐷𝑄) → 𝐾 ∈ HL)
29 dalem3.z . . . . . . 7 𝑍 = ((𝑆 𝑇) 𝑈)
30 dalem3.d . . . . . . 7 𝐷 = ((𝑃 𝑄) (𝑆 𝑇))
311, 7, 8, 9, 21, 10, 11, 29, 30dalemdea 36792 . . . . . 6 (𝜑𝐷𝐴)
3231adantr 483 . . . . 5 ((𝜑𝐷𝑄) → 𝐷𝐴)
335adantr 483 . . . . 5 ((𝜑𝐷𝑄) → 𝑅𝐴)
344adantr 483 . . . . 5 ((𝜑𝐷𝑄) → 𝑄𝐴)
35 simpr 487 . . . . 5 ((𝜑𝐷𝑄) → 𝐷𝑄)
367, 8, 9hlatexch1 36525 . . . . 5 ((𝐾 ∈ HL ∧ (𝐷𝐴𝑅𝐴𝑄𝐴) ∧ 𝐷𝑄) → (𝐷 (𝑄 𝑅) → 𝑅 (𝑄 𝐷)))
3728, 32, 33, 34, 35, 36syl131anc 1379 . . . 4 ((𝜑𝐷𝑄) → (𝐷 (𝑄 𝑅) → 𝑅 (𝑄 𝐷)))
387, 8, 9hlatlej2 36506 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝑄 (𝑃 𝑄))
392, 3, 4, 38syl3anc 1367 . . . . . . 7 (𝜑𝑄 (𝑃 𝑄))
401, 8, 9dalempjqeb 36775 . . . . . . . . 9 (𝜑 → (𝑃 𝑄) ∈ (Base‘𝐾))
411, 8, 9dalemsjteb 36776 . . . . . . . . 9 (𝜑 → (𝑆 𝑇) ∈ (Base‘𝐾))
4217, 7, 21latmle1 17680 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝑆 𝑇) ∈ (Base‘𝐾)) → ((𝑃 𝑄) (𝑆 𝑇)) (𝑃 𝑄))
4316, 40, 41, 42syl3anc 1367 . . . . . . . 8 (𝜑 → ((𝑃 𝑄) (𝑆 𝑇)) (𝑃 𝑄))
4430, 43eqbrtrid 5093 . . . . . . 7 (𝜑𝐷 (𝑃 𝑄))
451, 9dalemqeb 36770 . . . . . . . 8 (𝜑𝑄 ∈ (Base‘𝐾))
4617, 9atbase 36419 . . . . . . . . 9 (𝐷𝐴𝐷 ∈ (Base‘𝐾))
4731, 46syl 17 . . . . . . . 8 (𝜑𝐷 ∈ (Base‘𝐾))
4817, 7, 8latjle12 17666 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝐷 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → ((𝑄 (𝑃 𝑄) ∧ 𝐷 (𝑃 𝑄)) ↔ (𝑄 𝐷) (𝑃 𝑄)))
4916, 45, 47, 40, 48syl13anc 1368 . . . . . . 7 (𝜑 → ((𝑄 (𝑃 𝑄) ∧ 𝐷 (𝑃 𝑄)) ↔ (𝑄 𝐷) (𝑃 𝑄)))
5039, 44, 49mpbi2and 710 . . . . . 6 (𝜑 → (𝑄 𝐷) (𝑃 𝑄))
511, 9dalemreb 36771 . . . . . . 7 (𝜑𝑅 ∈ (Base‘𝐾))
5217, 8, 9hlatjcl 36497 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑄𝐴𝐷𝐴) → (𝑄 𝐷) ∈ (Base‘𝐾))
532, 4, 31, 52syl3anc 1367 . . . . . . 7 (𝜑 → (𝑄 𝐷) ∈ (Base‘𝐾))
5417, 7lattr 17660 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Base‘𝐾) ∧ (𝑄 𝐷) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → ((𝑅 (𝑄 𝐷) ∧ (𝑄 𝐷) (𝑃 𝑄)) → 𝑅 (𝑃 𝑄)))
5516, 51, 53, 40, 54syl13anc 1368 . . . . . 6 (𝜑 → ((𝑅 (𝑄 𝐷) ∧ (𝑄 𝐷) (𝑃 𝑄)) → 𝑅 (𝑃 𝑄)))
5650, 55mpan2d 692 . . . . 5 (𝜑 → (𝑅 (𝑄 𝐷) → 𝑅 (𝑃 𝑄)))
5756adantr 483 . . . 4 ((𝜑𝐷𝑄) → (𝑅 (𝑄 𝐷) → 𝑅 (𝑃 𝑄)))
5827, 37, 573syld 60 . . 3 ((𝜑𝐷𝑄) → (𝐷 = 𝐸𝑅 (𝑃 𝑄)))
5958necon3bd 3030 . 2 ((𝜑𝐷𝑄) → (¬ 𝑅 (𝑃 𝑄) → 𝐷𝐸))
6014, 59mpd 15 1 ((𝜑𝐷𝑄) → 𝐷𝐸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016   class class class wbr 5058  cfv 6349  (class class class)co 7150  Basecbs 16477  lecple 16566  joincjn 17548  meetcmee 17549  Latclat 17649  Atomscatm 36393  HLchlt 36480  LPlanesclpl 36622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-proset 17532  df-poset 17550  df-plt 17562  df-lub 17578  df-glb 17579  df-join 17580  df-meet 17581  df-p0 17643  df-lat 17650  df-clat 17712  df-oposet 36306  df-ol 36308  df-oml 36309  df-covers 36396  df-ats 36397  df-atl 36428  df-cvlat 36452  df-hlat 36481  df-llines 36628  df-lplanes 36629
This theorem is referenced by:  dalem4  36795  dalemdnee  36796
  Copyright terms: Public domain W3C validator