Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem3 Structured version   Visualization version   GIF version

Theorem dalem3 39631
Description: Lemma for dalemdnee 39633. (Contributed by NM, 10-Aug-2012.)
Hypotheses
Ref Expression
dalema.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalemc.l = (le‘𝐾)
dalemc.j = (join‘𝐾)
dalemc.a 𝐴 = (Atoms‘𝐾)
dalem3.m = (meet‘𝐾)
dalem3.o 𝑂 = (LPlanes‘𝐾)
dalem3.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem3.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem3.d 𝐷 = ((𝑃 𝑄) (𝑆 𝑇))
dalem3.e 𝐸 = ((𝑄 𝑅) (𝑇 𝑈))
Assertion
Ref Expression
dalem3 ((𝜑𝐷𝑄) → 𝐷𝐸)

Proof of Theorem dalem3
StepHypRef Expression
1 dalema.ph . . . . 5 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
21dalemkehl 39590 . . . 4 (𝜑𝐾 ∈ HL)
31dalempea 39593 . . . 4 (𝜑𝑃𝐴)
41dalemqea 39594 . . . 4 (𝜑𝑄𝐴)
51dalemrea 39595 . . . 4 (𝜑𝑅𝐴)
61dalemyeo 39599 . . . 4 (𝜑𝑌𝑂)
7 dalemc.l . . . . 5 = (le‘𝐾)
8 dalemc.j . . . . 5 = (join‘𝐾)
9 dalemc.a . . . . 5 𝐴 = (Atoms‘𝐾)
10 dalem3.o . . . . 5 𝑂 = (LPlanes‘𝐾)
11 dalem3.y . . . . 5 𝑌 = ((𝑃 𝑄) 𝑅)
127, 8, 9, 10, 11lplnric 39519 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑌𝑂) → ¬ 𝑅 (𝑃 𝑄))
132, 3, 4, 5, 6, 12syl131anc 1385 . . 3 (𝜑 → ¬ 𝑅 (𝑃 𝑄))
1413adantr 480 . 2 ((𝜑𝐷𝑄) → ¬ 𝑅 (𝑃 𝑄))
15 dalem3.e . . . . . . 7 𝐸 = ((𝑄 𝑅) (𝑇 𝑈))
161dalemkelat 39591 . . . . . . . 8 (𝜑𝐾 ∈ Lat)
17 eqid 2729 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
1817, 8, 9hlatjcl 39333 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) ∈ (Base‘𝐾))
192, 4, 5, 18syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑄 𝑅) ∈ (Base‘𝐾))
201, 8, 9dalemtjueb 39614 . . . . . . . 8 (𝜑 → (𝑇 𝑈) ∈ (Base‘𝐾))
21 dalem3.m . . . . . . . . 9 = (meet‘𝐾)
2217, 7, 21latmle1 18399 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ (𝑇 𝑈) ∈ (Base‘𝐾)) → ((𝑄 𝑅) (𝑇 𝑈)) (𝑄 𝑅))
2316, 19, 20, 22syl3anc 1373 . . . . . . 7 (𝜑 → ((𝑄 𝑅) (𝑇 𝑈)) (𝑄 𝑅))
2415, 23eqbrtrid 5137 . . . . . 6 (𝜑𝐸 (𝑄 𝑅))
25 breq1 5105 . . . . . 6 (𝐷 = 𝐸 → (𝐷 (𝑄 𝑅) ↔ 𝐸 (𝑄 𝑅)))
2624, 25syl5ibrcom 247 . . . . 5 (𝜑 → (𝐷 = 𝐸𝐷 (𝑄 𝑅)))
2726adantr 480 . . . 4 ((𝜑𝐷𝑄) → (𝐷 = 𝐸𝐷 (𝑄 𝑅)))
282adantr 480 . . . . 5 ((𝜑𝐷𝑄) → 𝐾 ∈ HL)
29 dalem3.z . . . . . . 7 𝑍 = ((𝑆 𝑇) 𝑈)
30 dalem3.d . . . . . . 7 𝐷 = ((𝑃 𝑄) (𝑆 𝑇))
311, 7, 8, 9, 21, 10, 11, 29, 30dalemdea 39629 . . . . . 6 (𝜑𝐷𝐴)
3231adantr 480 . . . . 5 ((𝜑𝐷𝑄) → 𝐷𝐴)
335adantr 480 . . . . 5 ((𝜑𝐷𝑄) → 𝑅𝐴)
344adantr 480 . . . . 5 ((𝜑𝐷𝑄) → 𝑄𝐴)
35 simpr 484 . . . . 5 ((𝜑𝐷𝑄) → 𝐷𝑄)
367, 8, 9hlatexch1 39362 . . . . 5 ((𝐾 ∈ HL ∧ (𝐷𝐴𝑅𝐴𝑄𝐴) ∧ 𝐷𝑄) → (𝐷 (𝑄 𝑅) → 𝑅 (𝑄 𝐷)))
3728, 32, 33, 34, 35, 36syl131anc 1385 . . . 4 ((𝜑𝐷𝑄) → (𝐷 (𝑄 𝑅) → 𝑅 (𝑄 𝐷)))
387, 8, 9hlatlej2 39342 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝑄 (𝑃 𝑄))
392, 3, 4, 38syl3anc 1373 . . . . . . 7 (𝜑𝑄 (𝑃 𝑄))
401, 8, 9dalempjqeb 39612 . . . . . . . . 9 (𝜑 → (𝑃 𝑄) ∈ (Base‘𝐾))
411, 8, 9dalemsjteb 39613 . . . . . . . . 9 (𝜑 → (𝑆 𝑇) ∈ (Base‘𝐾))
4217, 7, 21latmle1 18399 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝑆 𝑇) ∈ (Base‘𝐾)) → ((𝑃 𝑄) (𝑆 𝑇)) (𝑃 𝑄))
4316, 40, 41, 42syl3anc 1373 . . . . . . . 8 (𝜑 → ((𝑃 𝑄) (𝑆 𝑇)) (𝑃 𝑄))
4430, 43eqbrtrid 5137 . . . . . . 7 (𝜑𝐷 (𝑃 𝑄))
451, 9dalemqeb 39607 . . . . . . . 8 (𝜑𝑄 ∈ (Base‘𝐾))
4617, 9atbase 39255 . . . . . . . . 9 (𝐷𝐴𝐷 ∈ (Base‘𝐾))
4731, 46syl 17 . . . . . . . 8 (𝜑𝐷 ∈ (Base‘𝐾))
4817, 7, 8latjle12 18385 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝐷 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → ((𝑄 (𝑃 𝑄) ∧ 𝐷 (𝑃 𝑄)) ↔ (𝑄 𝐷) (𝑃 𝑄)))
4916, 45, 47, 40, 48syl13anc 1374 . . . . . . 7 (𝜑 → ((𝑄 (𝑃 𝑄) ∧ 𝐷 (𝑃 𝑄)) ↔ (𝑄 𝐷) (𝑃 𝑄)))
5039, 44, 49mpbi2and 712 . . . . . 6 (𝜑 → (𝑄 𝐷) (𝑃 𝑄))
511, 9dalemreb 39608 . . . . . . 7 (𝜑𝑅 ∈ (Base‘𝐾))
5217, 8, 9hlatjcl 39333 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑄𝐴𝐷𝐴) → (𝑄 𝐷) ∈ (Base‘𝐾))
532, 4, 31, 52syl3anc 1373 . . . . . . 7 (𝜑 → (𝑄 𝐷) ∈ (Base‘𝐾))
5417, 7lattr 18379 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Base‘𝐾) ∧ (𝑄 𝐷) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → ((𝑅 (𝑄 𝐷) ∧ (𝑄 𝐷) (𝑃 𝑄)) → 𝑅 (𝑃 𝑄)))
5516, 51, 53, 40, 54syl13anc 1374 . . . . . 6 (𝜑 → ((𝑅 (𝑄 𝐷) ∧ (𝑄 𝐷) (𝑃 𝑄)) → 𝑅 (𝑃 𝑄)))
5650, 55mpan2d 694 . . . . 5 (𝜑 → (𝑅 (𝑄 𝐷) → 𝑅 (𝑃 𝑄)))
5756adantr 480 . . . 4 ((𝜑𝐷𝑄) → (𝑅 (𝑄 𝐷) → 𝑅 (𝑃 𝑄)))
5827, 37, 573syld 60 . . 3 ((𝜑𝐷𝑄) → (𝐷 = 𝐸𝑅 (𝑃 𝑄)))
5958necon3bd 2939 . 2 ((𝜑𝐷𝑄) → (¬ 𝑅 (𝑃 𝑄) → 𝐷𝐸))
6014, 59mpd 15 1 ((𝜑𝐷𝑄) → 𝐷𝐸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203  joincjn 18248  meetcmee 18249  Latclat 18366  Atomscatm 39229  HLchlt 39316  LPlanesclpl 39459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-proset 18231  df-poset 18250  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-lat 18367  df-clat 18434  df-oposet 39142  df-ol 39144  df-oml 39145  df-covers 39232  df-ats 39233  df-atl 39264  df-cvlat 39288  df-hlat 39317  df-llines 39465  df-lplanes 39466
This theorem is referenced by:  dalem4  39632  dalemdnee  39633
  Copyright terms: Public domain W3C validator