Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem3 Structured version   Visualization version   GIF version

Theorem dalem3 39643
Description: Lemma for dalemdnee 39645. (Contributed by NM, 10-Aug-2012.)
Hypotheses
Ref Expression
dalema.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalemc.l = (le‘𝐾)
dalemc.j = (join‘𝐾)
dalemc.a 𝐴 = (Atoms‘𝐾)
dalem3.m = (meet‘𝐾)
dalem3.o 𝑂 = (LPlanes‘𝐾)
dalem3.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem3.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem3.d 𝐷 = ((𝑃 𝑄) (𝑆 𝑇))
dalem3.e 𝐸 = ((𝑄 𝑅) (𝑇 𝑈))
Assertion
Ref Expression
dalem3 ((𝜑𝐷𝑄) → 𝐷𝐸)

Proof of Theorem dalem3
StepHypRef Expression
1 dalema.ph . . . . 5 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
21dalemkehl 39602 . . . 4 (𝜑𝐾 ∈ HL)
31dalempea 39605 . . . 4 (𝜑𝑃𝐴)
41dalemqea 39606 . . . 4 (𝜑𝑄𝐴)
51dalemrea 39607 . . . 4 (𝜑𝑅𝐴)
61dalemyeo 39611 . . . 4 (𝜑𝑌𝑂)
7 dalemc.l . . . . 5 = (le‘𝐾)
8 dalemc.j . . . . 5 = (join‘𝐾)
9 dalemc.a . . . . 5 𝐴 = (Atoms‘𝐾)
10 dalem3.o . . . . 5 𝑂 = (LPlanes‘𝐾)
11 dalem3.y . . . . 5 𝑌 = ((𝑃 𝑄) 𝑅)
127, 8, 9, 10, 11lplnric 39531 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑌𝑂) → ¬ 𝑅 (𝑃 𝑄))
132, 3, 4, 5, 6, 12syl131anc 1385 . . 3 (𝜑 → ¬ 𝑅 (𝑃 𝑄))
1413adantr 480 . 2 ((𝜑𝐷𝑄) → ¬ 𝑅 (𝑃 𝑄))
15 dalem3.e . . . . . . 7 𝐸 = ((𝑄 𝑅) (𝑇 𝑈))
161dalemkelat 39603 . . . . . . . 8 (𝜑𝐾 ∈ Lat)
17 eqid 2729 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
1817, 8, 9hlatjcl 39346 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) ∈ (Base‘𝐾))
192, 4, 5, 18syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑄 𝑅) ∈ (Base‘𝐾))
201, 8, 9dalemtjueb 39626 . . . . . . . 8 (𝜑 → (𝑇 𝑈) ∈ (Base‘𝐾))
21 dalem3.m . . . . . . . . 9 = (meet‘𝐾)
2217, 7, 21latmle1 18370 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ (𝑇 𝑈) ∈ (Base‘𝐾)) → ((𝑄 𝑅) (𝑇 𝑈)) (𝑄 𝑅))
2316, 19, 20, 22syl3anc 1373 . . . . . . 7 (𝜑 → ((𝑄 𝑅) (𝑇 𝑈)) (𝑄 𝑅))
2415, 23eqbrtrid 5127 . . . . . 6 (𝜑𝐸 (𝑄 𝑅))
25 breq1 5095 . . . . . 6 (𝐷 = 𝐸 → (𝐷 (𝑄 𝑅) ↔ 𝐸 (𝑄 𝑅)))
2624, 25syl5ibrcom 247 . . . . 5 (𝜑 → (𝐷 = 𝐸𝐷 (𝑄 𝑅)))
2726adantr 480 . . . 4 ((𝜑𝐷𝑄) → (𝐷 = 𝐸𝐷 (𝑄 𝑅)))
282adantr 480 . . . . 5 ((𝜑𝐷𝑄) → 𝐾 ∈ HL)
29 dalem3.z . . . . . . 7 𝑍 = ((𝑆 𝑇) 𝑈)
30 dalem3.d . . . . . . 7 𝐷 = ((𝑃 𝑄) (𝑆 𝑇))
311, 7, 8, 9, 21, 10, 11, 29, 30dalemdea 39641 . . . . . 6 (𝜑𝐷𝐴)
3231adantr 480 . . . . 5 ((𝜑𝐷𝑄) → 𝐷𝐴)
335adantr 480 . . . . 5 ((𝜑𝐷𝑄) → 𝑅𝐴)
344adantr 480 . . . . 5 ((𝜑𝐷𝑄) → 𝑄𝐴)
35 simpr 484 . . . . 5 ((𝜑𝐷𝑄) → 𝐷𝑄)
367, 8, 9hlatexch1 39374 . . . . 5 ((𝐾 ∈ HL ∧ (𝐷𝐴𝑅𝐴𝑄𝐴) ∧ 𝐷𝑄) → (𝐷 (𝑄 𝑅) → 𝑅 (𝑄 𝐷)))
3728, 32, 33, 34, 35, 36syl131anc 1385 . . . 4 ((𝜑𝐷𝑄) → (𝐷 (𝑄 𝑅) → 𝑅 (𝑄 𝐷)))
387, 8, 9hlatlej2 39355 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝑄 (𝑃 𝑄))
392, 3, 4, 38syl3anc 1373 . . . . . . 7 (𝜑𝑄 (𝑃 𝑄))
401, 8, 9dalempjqeb 39624 . . . . . . . . 9 (𝜑 → (𝑃 𝑄) ∈ (Base‘𝐾))
411, 8, 9dalemsjteb 39625 . . . . . . . . 9 (𝜑 → (𝑆 𝑇) ∈ (Base‘𝐾))
4217, 7, 21latmle1 18370 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝑆 𝑇) ∈ (Base‘𝐾)) → ((𝑃 𝑄) (𝑆 𝑇)) (𝑃 𝑄))
4316, 40, 41, 42syl3anc 1373 . . . . . . . 8 (𝜑 → ((𝑃 𝑄) (𝑆 𝑇)) (𝑃 𝑄))
4430, 43eqbrtrid 5127 . . . . . . 7 (𝜑𝐷 (𝑃 𝑄))
451, 9dalemqeb 39619 . . . . . . . 8 (𝜑𝑄 ∈ (Base‘𝐾))
4617, 9atbase 39268 . . . . . . . . 9 (𝐷𝐴𝐷 ∈ (Base‘𝐾))
4731, 46syl 17 . . . . . . . 8 (𝜑𝐷 ∈ (Base‘𝐾))
4817, 7, 8latjle12 18356 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝐷 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → ((𝑄 (𝑃 𝑄) ∧ 𝐷 (𝑃 𝑄)) ↔ (𝑄 𝐷) (𝑃 𝑄)))
4916, 45, 47, 40, 48syl13anc 1374 . . . . . . 7 (𝜑 → ((𝑄 (𝑃 𝑄) ∧ 𝐷 (𝑃 𝑄)) ↔ (𝑄 𝐷) (𝑃 𝑄)))
5039, 44, 49mpbi2and 712 . . . . . 6 (𝜑 → (𝑄 𝐷) (𝑃 𝑄))
511, 9dalemreb 39620 . . . . . . 7 (𝜑𝑅 ∈ (Base‘𝐾))
5217, 8, 9hlatjcl 39346 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑄𝐴𝐷𝐴) → (𝑄 𝐷) ∈ (Base‘𝐾))
532, 4, 31, 52syl3anc 1373 . . . . . . 7 (𝜑 → (𝑄 𝐷) ∈ (Base‘𝐾))
5417, 7lattr 18350 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Base‘𝐾) ∧ (𝑄 𝐷) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → ((𝑅 (𝑄 𝐷) ∧ (𝑄 𝐷) (𝑃 𝑄)) → 𝑅 (𝑃 𝑄)))
5516, 51, 53, 40, 54syl13anc 1374 . . . . . 6 (𝜑 → ((𝑅 (𝑄 𝐷) ∧ (𝑄 𝐷) (𝑃 𝑄)) → 𝑅 (𝑃 𝑄)))
5650, 55mpan2d 694 . . . . 5 (𝜑 → (𝑅 (𝑄 𝐷) → 𝑅 (𝑃 𝑄)))
5756adantr 480 . . . 4 ((𝜑𝐷𝑄) → (𝑅 (𝑄 𝐷) → 𝑅 (𝑃 𝑄)))
5827, 37, 573syld 60 . . 3 ((𝜑𝐷𝑄) → (𝐷 = 𝐸𝑅 (𝑃 𝑄)))
5958necon3bd 2939 . 2 ((𝜑𝐷𝑄) → (¬ 𝑅 (𝑃 𝑄) → 𝐷𝐸))
6014, 59mpd 15 1 ((𝜑𝐷𝑄) → 𝐷𝐸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5092  cfv 6482  (class class class)co 7349  Basecbs 17120  lecple 17168  joincjn 18217  meetcmee 18218  Latclat 18337  Atomscatm 39242  HLchlt 39329  LPlanesclpl 39471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-lat 18338  df-clat 18405  df-oposet 39155  df-ol 39157  df-oml 39158  df-covers 39245  df-ats 39246  df-atl 39277  df-cvlat 39301  df-hlat 39330  df-llines 39477  df-lplanes 39478
This theorem is referenced by:  dalem4  39644  dalemdnee  39645
  Copyright terms: Public domain W3C validator