Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem3 Structured version   Visualization version   GIF version

Theorem dalem3 39621
Description: Lemma for dalemdnee 39623. (Contributed by NM, 10-Aug-2012.)
Hypotheses
Ref Expression
dalema.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalemc.l = (le‘𝐾)
dalemc.j = (join‘𝐾)
dalemc.a 𝐴 = (Atoms‘𝐾)
dalem3.m = (meet‘𝐾)
dalem3.o 𝑂 = (LPlanes‘𝐾)
dalem3.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem3.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem3.d 𝐷 = ((𝑃 𝑄) (𝑆 𝑇))
dalem3.e 𝐸 = ((𝑄 𝑅) (𝑇 𝑈))
Assertion
Ref Expression
dalem3 ((𝜑𝐷𝑄) → 𝐷𝐸)

Proof of Theorem dalem3
StepHypRef Expression
1 dalema.ph . . . . 5 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
21dalemkehl 39580 . . . 4 (𝜑𝐾 ∈ HL)
31dalempea 39583 . . . 4 (𝜑𝑃𝐴)
41dalemqea 39584 . . . 4 (𝜑𝑄𝐴)
51dalemrea 39585 . . . 4 (𝜑𝑅𝐴)
61dalemyeo 39589 . . . 4 (𝜑𝑌𝑂)
7 dalemc.l . . . . 5 = (le‘𝐾)
8 dalemc.j . . . . 5 = (join‘𝐾)
9 dalemc.a . . . . 5 𝐴 = (Atoms‘𝐾)
10 dalem3.o . . . . 5 𝑂 = (LPlanes‘𝐾)
11 dalem3.y . . . . 5 𝑌 = ((𝑃 𝑄) 𝑅)
127, 8, 9, 10, 11lplnric 39509 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑌𝑂) → ¬ 𝑅 (𝑃 𝑄))
132, 3, 4, 5, 6, 12syl131anc 1383 . . 3 (𝜑 → ¬ 𝑅 (𝑃 𝑄))
1413adantr 480 . 2 ((𝜑𝐷𝑄) → ¬ 𝑅 (𝑃 𝑄))
15 dalem3.e . . . . . . 7 𝐸 = ((𝑄 𝑅) (𝑇 𝑈))
161dalemkelat 39581 . . . . . . . 8 (𝜑𝐾 ∈ Lat)
17 eqid 2740 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
1817, 8, 9hlatjcl 39323 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) ∈ (Base‘𝐾))
192, 4, 5, 18syl3anc 1371 . . . . . . . 8 (𝜑 → (𝑄 𝑅) ∈ (Base‘𝐾))
201, 8, 9dalemtjueb 39604 . . . . . . . 8 (𝜑 → (𝑇 𝑈) ∈ (Base‘𝐾))
21 dalem3.m . . . . . . . . 9 = (meet‘𝐾)
2217, 7, 21latmle1 18534 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ (𝑇 𝑈) ∈ (Base‘𝐾)) → ((𝑄 𝑅) (𝑇 𝑈)) (𝑄 𝑅))
2316, 19, 20, 22syl3anc 1371 . . . . . . 7 (𝜑 → ((𝑄 𝑅) (𝑇 𝑈)) (𝑄 𝑅))
2415, 23eqbrtrid 5201 . . . . . 6 (𝜑𝐸 (𝑄 𝑅))
25 breq1 5169 . . . . . 6 (𝐷 = 𝐸 → (𝐷 (𝑄 𝑅) ↔ 𝐸 (𝑄 𝑅)))
2624, 25syl5ibrcom 247 . . . . 5 (𝜑 → (𝐷 = 𝐸𝐷 (𝑄 𝑅)))
2726adantr 480 . . . 4 ((𝜑𝐷𝑄) → (𝐷 = 𝐸𝐷 (𝑄 𝑅)))
282adantr 480 . . . . 5 ((𝜑𝐷𝑄) → 𝐾 ∈ HL)
29 dalem3.z . . . . . . 7 𝑍 = ((𝑆 𝑇) 𝑈)
30 dalem3.d . . . . . . 7 𝐷 = ((𝑃 𝑄) (𝑆 𝑇))
311, 7, 8, 9, 21, 10, 11, 29, 30dalemdea 39619 . . . . . 6 (𝜑𝐷𝐴)
3231adantr 480 . . . . 5 ((𝜑𝐷𝑄) → 𝐷𝐴)
335adantr 480 . . . . 5 ((𝜑𝐷𝑄) → 𝑅𝐴)
344adantr 480 . . . . 5 ((𝜑𝐷𝑄) → 𝑄𝐴)
35 simpr 484 . . . . 5 ((𝜑𝐷𝑄) → 𝐷𝑄)
367, 8, 9hlatexch1 39352 . . . . 5 ((𝐾 ∈ HL ∧ (𝐷𝐴𝑅𝐴𝑄𝐴) ∧ 𝐷𝑄) → (𝐷 (𝑄 𝑅) → 𝑅 (𝑄 𝐷)))
3728, 32, 33, 34, 35, 36syl131anc 1383 . . . 4 ((𝜑𝐷𝑄) → (𝐷 (𝑄 𝑅) → 𝑅 (𝑄 𝐷)))
387, 8, 9hlatlej2 39332 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝑄 (𝑃 𝑄))
392, 3, 4, 38syl3anc 1371 . . . . . . 7 (𝜑𝑄 (𝑃 𝑄))
401, 8, 9dalempjqeb 39602 . . . . . . . . 9 (𝜑 → (𝑃 𝑄) ∈ (Base‘𝐾))
411, 8, 9dalemsjteb 39603 . . . . . . . . 9 (𝜑 → (𝑆 𝑇) ∈ (Base‘𝐾))
4217, 7, 21latmle1 18534 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝑆 𝑇) ∈ (Base‘𝐾)) → ((𝑃 𝑄) (𝑆 𝑇)) (𝑃 𝑄))
4316, 40, 41, 42syl3anc 1371 . . . . . . . 8 (𝜑 → ((𝑃 𝑄) (𝑆 𝑇)) (𝑃 𝑄))
4430, 43eqbrtrid 5201 . . . . . . 7 (𝜑𝐷 (𝑃 𝑄))
451, 9dalemqeb 39597 . . . . . . . 8 (𝜑𝑄 ∈ (Base‘𝐾))
4617, 9atbase 39245 . . . . . . . . 9 (𝐷𝐴𝐷 ∈ (Base‘𝐾))
4731, 46syl 17 . . . . . . . 8 (𝜑𝐷 ∈ (Base‘𝐾))
4817, 7, 8latjle12 18520 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝐷 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → ((𝑄 (𝑃 𝑄) ∧ 𝐷 (𝑃 𝑄)) ↔ (𝑄 𝐷) (𝑃 𝑄)))
4916, 45, 47, 40, 48syl13anc 1372 . . . . . . 7 (𝜑 → ((𝑄 (𝑃 𝑄) ∧ 𝐷 (𝑃 𝑄)) ↔ (𝑄 𝐷) (𝑃 𝑄)))
5039, 44, 49mpbi2and 711 . . . . . 6 (𝜑 → (𝑄 𝐷) (𝑃 𝑄))
511, 9dalemreb 39598 . . . . . . 7 (𝜑𝑅 ∈ (Base‘𝐾))
5217, 8, 9hlatjcl 39323 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑄𝐴𝐷𝐴) → (𝑄 𝐷) ∈ (Base‘𝐾))
532, 4, 31, 52syl3anc 1371 . . . . . . 7 (𝜑 → (𝑄 𝐷) ∈ (Base‘𝐾))
5417, 7lattr 18514 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Base‘𝐾) ∧ (𝑄 𝐷) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → ((𝑅 (𝑄 𝐷) ∧ (𝑄 𝐷) (𝑃 𝑄)) → 𝑅 (𝑃 𝑄)))
5516, 51, 53, 40, 54syl13anc 1372 . . . . . 6 (𝜑 → ((𝑅 (𝑄 𝐷) ∧ (𝑄 𝐷) (𝑃 𝑄)) → 𝑅 (𝑃 𝑄)))
5650, 55mpan2d 693 . . . . 5 (𝜑 → (𝑅 (𝑄 𝐷) → 𝑅 (𝑃 𝑄)))
5756adantr 480 . . . 4 ((𝜑𝐷𝑄) → (𝑅 (𝑄 𝐷) → 𝑅 (𝑃 𝑄)))
5827, 37, 573syld 60 . . 3 ((𝜑𝐷𝑄) → (𝐷 = 𝐸𝑅 (𝑃 𝑄)))
5958necon3bd 2960 . 2 ((𝜑𝐷𝑄) → (¬ 𝑅 (𝑃 𝑄) → 𝐷𝐸))
6014, 59mpd 15 1 ((𝜑𝐷𝑄) → 𝐷𝐸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  lecple 17318  joincjn 18381  meetcmee 18382  Latclat 18501  Atomscatm 39219  HLchlt 39306  LPlanesclpl 39449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-llines 39455  df-lplanes 39456
This theorem is referenced by:  dalem4  39622  dalemdnee  39623
  Copyright terms: Public domain W3C validator