Proof of Theorem dalem3
Step | Hyp | Ref
| Expression |
1 | | dalema.ph |
. . . . 5
⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
2 | 1 | dalemkehl 37374 |
. . . 4
⊢ (𝜑 → 𝐾 ∈ HL) |
3 | 1 | dalempea 37377 |
. . . 4
⊢ (𝜑 → 𝑃 ∈ 𝐴) |
4 | 1 | dalemqea 37378 |
. . . 4
⊢ (𝜑 → 𝑄 ∈ 𝐴) |
5 | 1 | dalemrea 37379 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ 𝐴) |
6 | 1 | dalemyeo 37383 |
. . . 4
⊢ (𝜑 → 𝑌 ∈ 𝑂) |
7 | | dalemc.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
8 | | dalemc.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
9 | | dalemc.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
10 | | dalem3.o |
. . . . 5
⊢ 𝑂 = (LPlanes‘𝐾) |
11 | | dalem3.y |
. . . . 5
⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
12 | 7, 8, 9, 10, 11 | lplnric 37303 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑌 ∈ 𝑂) → ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) |
13 | 2, 3, 4, 5, 6, 12 | syl131anc 1385 |
. . 3
⊢ (𝜑 → ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) |
14 | 13 | adantr 484 |
. 2
⊢ ((𝜑 ∧ 𝐷 ≠ 𝑄) → ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) |
15 | | dalem3.e |
. . . . . . 7
⊢ 𝐸 = ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) |
16 | 1 | dalemkelat 37375 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ Lat) |
17 | | eqid 2737 |
. . . . . . . . . 10
⊢
(Base‘𝐾) =
(Base‘𝐾) |
18 | 17, 8, 9 | hlatjcl 37118 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑄 ∨ 𝑅) ∈ (Base‘𝐾)) |
19 | 2, 4, 5, 18 | syl3anc 1373 |
. . . . . . . 8
⊢ (𝜑 → (𝑄 ∨ 𝑅) ∈ (Base‘𝐾)) |
20 | 1, 8, 9 | dalemtjueb 37398 |
. . . . . . . 8
⊢ (𝜑 → (𝑇 ∨ 𝑈) ∈ (Base‘𝐾)) |
21 | | dalem3.m |
. . . . . . . . 9
⊢ ∧ =
(meet‘𝐾) |
22 | 17, 7, 21 | latmle1 17970 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∨ 𝑅) ∈ (Base‘𝐾) ∧ (𝑇 ∨ 𝑈) ∈ (Base‘𝐾)) → ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ≤ (𝑄 ∨ 𝑅)) |
23 | 16, 19, 20, 22 | syl3anc 1373 |
. . . . . . 7
⊢ (𝜑 → ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ≤ (𝑄 ∨ 𝑅)) |
24 | 15, 23 | eqbrtrid 5088 |
. . . . . 6
⊢ (𝜑 → 𝐸 ≤ (𝑄 ∨ 𝑅)) |
25 | | breq1 5056 |
. . . . . 6
⊢ (𝐷 = 𝐸 → (𝐷 ≤ (𝑄 ∨ 𝑅) ↔ 𝐸 ≤ (𝑄 ∨ 𝑅))) |
26 | 24, 25 | syl5ibrcom 250 |
. . . . 5
⊢ (𝜑 → (𝐷 = 𝐸 → 𝐷 ≤ (𝑄 ∨ 𝑅))) |
27 | 26 | adantr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝐷 ≠ 𝑄) → (𝐷 = 𝐸 → 𝐷 ≤ (𝑄 ∨ 𝑅))) |
28 | 2 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝐷 ≠ 𝑄) → 𝐾 ∈ HL) |
29 | | dalem3.z |
. . . . . . 7
⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) |
30 | | dalem3.d |
. . . . . . 7
⊢ 𝐷 = ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) |
31 | 1, 7, 8, 9, 21, 10, 11, 29, 30 | dalemdea 37413 |
. . . . . 6
⊢ (𝜑 → 𝐷 ∈ 𝐴) |
32 | 31 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝐷 ≠ 𝑄) → 𝐷 ∈ 𝐴) |
33 | 5 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝐷 ≠ 𝑄) → 𝑅 ∈ 𝐴) |
34 | 4 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝐷 ≠ 𝑄) → 𝑄 ∈ 𝐴) |
35 | | simpr 488 |
. . . . 5
⊢ ((𝜑 ∧ 𝐷 ≠ 𝑄) → 𝐷 ≠ 𝑄) |
36 | 7, 8, 9 | hlatexch1 37146 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝐷 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝐷 ≠ 𝑄) → (𝐷 ≤ (𝑄 ∨ 𝑅) → 𝑅 ≤ (𝑄 ∨ 𝐷))) |
37 | 28, 32, 33, 34, 35, 36 | syl131anc 1385 |
. . . 4
⊢ ((𝜑 ∧ 𝐷 ≠ 𝑄) → (𝐷 ≤ (𝑄 ∨ 𝑅) → 𝑅 ≤ (𝑄 ∨ 𝐷))) |
38 | 7, 8, 9 | hlatlej2 37127 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑄 ≤ (𝑃 ∨ 𝑄)) |
39 | 2, 3, 4, 38 | syl3anc 1373 |
. . . . . . 7
⊢ (𝜑 → 𝑄 ≤ (𝑃 ∨ 𝑄)) |
40 | 1, 8, 9 | dalempjqeb 37396 |
. . . . . . . . 9
⊢ (𝜑 → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
41 | 1, 8, 9 | dalemsjteb 37397 |
. . . . . . . . 9
⊢ (𝜑 → (𝑆 ∨ 𝑇) ∈ (Base‘𝐾)) |
42 | 17, 7, 21 | latmle1 17970 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ (𝑆 ∨ 𝑇) ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄)) |
43 | 16, 40, 41, 42 | syl3anc 1373 |
. . . . . . . 8
⊢ (𝜑 → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄)) |
44 | 30, 43 | eqbrtrid 5088 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ≤ (𝑃 ∨ 𝑄)) |
45 | 1, 9 | dalemqeb 37391 |
. . . . . . . 8
⊢ (𝜑 → 𝑄 ∈ (Base‘𝐾)) |
46 | 17, 9 | atbase 37040 |
. . . . . . . . 9
⊢ (𝐷 ∈ 𝐴 → 𝐷 ∈ (Base‘𝐾)) |
47 | 31, 46 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐷 ∈ (Base‘𝐾)) |
48 | 17, 7, 8 | latjle12 17956 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝐷 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾))) → ((𝑄 ≤ (𝑃 ∨ 𝑄) ∧ 𝐷 ≤ (𝑃 ∨ 𝑄)) ↔ (𝑄 ∨ 𝐷) ≤ (𝑃 ∨ 𝑄))) |
49 | 16, 45, 47, 40, 48 | syl13anc 1374 |
. . . . . . 7
⊢ (𝜑 → ((𝑄 ≤ (𝑃 ∨ 𝑄) ∧ 𝐷 ≤ (𝑃 ∨ 𝑄)) ↔ (𝑄 ∨ 𝐷) ≤ (𝑃 ∨ 𝑄))) |
50 | 39, 44, 49 | mpbi2and 712 |
. . . . . 6
⊢ (𝜑 → (𝑄 ∨ 𝐷) ≤ (𝑃 ∨ 𝑄)) |
51 | 1, 9 | dalemreb 37392 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ (Base‘𝐾)) |
52 | 17, 8, 9 | hlatjcl 37118 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) → (𝑄 ∨ 𝐷) ∈ (Base‘𝐾)) |
53 | 2, 4, 31, 52 | syl3anc 1373 |
. . . . . . 7
⊢ (𝜑 → (𝑄 ∨ 𝐷) ∈ (Base‘𝐾)) |
54 | 17, 7 | lattr 17950 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Base‘𝐾) ∧ (𝑄 ∨ 𝐷) ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾))) → ((𝑅 ≤ (𝑄 ∨ 𝐷) ∧ (𝑄 ∨ 𝐷) ≤ (𝑃 ∨ 𝑄)) → 𝑅 ≤ (𝑃 ∨ 𝑄))) |
55 | 16, 51, 53, 40, 54 | syl13anc 1374 |
. . . . . 6
⊢ (𝜑 → ((𝑅 ≤ (𝑄 ∨ 𝐷) ∧ (𝑄 ∨ 𝐷) ≤ (𝑃 ∨ 𝑄)) → 𝑅 ≤ (𝑃 ∨ 𝑄))) |
56 | 50, 55 | mpan2d 694 |
. . . . 5
⊢ (𝜑 → (𝑅 ≤ (𝑄 ∨ 𝐷) → 𝑅 ≤ (𝑃 ∨ 𝑄))) |
57 | 56 | adantr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝐷 ≠ 𝑄) → (𝑅 ≤ (𝑄 ∨ 𝐷) → 𝑅 ≤ (𝑃 ∨ 𝑄))) |
58 | 27, 37, 57 | 3syld 60 |
. . 3
⊢ ((𝜑 ∧ 𝐷 ≠ 𝑄) → (𝐷 = 𝐸 → 𝑅 ≤ (𝑃 ∨ 𝑄))) |
59 | 58 | necon3bd 2954 |
. 2
⊢ ((𝜑 ∧ 𝐷 ≠ 𝑄) → (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) → 𝐷 ≠ 𝐸)) |
60 | 14, 59 | mpd 15 |
1
⊢ ((𝜑 ∧ 𝐷 ≠ 𝑄) → 𝐷 ≠ 𝐸) |