| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dalemsly | Structured version Visualization version GIF version | ||
| Description: Lemma for dath 39737. Frequently-used utility lemma. (Contributed by NM, 15-Aug-2012.) |
| Ref | Expression |
|---|---|
| dalema.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
| dalemc.l | ⊢ ≤ = (le‘𝐾) |
| dalemc.j | ⊢ ∨ = (join‘𝐾) |
| dalemc.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| dalemsly.z | ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) |
| Ref | Expression |
|---|---|
| dalemsly | ⊢ ((𝜑 ∧ 𝑌 = 𝑍) → 𝑆 ≤ 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dalema.ph | . . . . . . 7 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | |
| 2 | 1 | dalemkelat 39625 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ Lat) |
| 3 | dalemc.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | 1, 3 | dalemseb 39643 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ (Base‘𝐾)) |
| 5 | dalemc.j | . . . . . . 7 ⊢ ∨ = (join‘𝐾) | |
| 6 | 1, 5, 3 | dalemtjueb 39648 | . . . . . 6 ⊢ (𝜑 → (𝑇 ∨ 𝑈) ∈ (Base‘𝐾)) |
| 7 | eqid 2730 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 8 | dalemc.l | . . . . . . 7 ⊢ ≤ = (le‘𝐾) | |
| 9 | 7, 8, 5 | latlej1 18414 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ 𝑆 ∈ (Base‘𝐾) ∧ (𝑇 ∨ 𝑈) ∈ (Base‘𝐾)) → 𝑆 ≤ (𝑆 ∨ (𝑇 ∨ 𝑈))) |
| 10 | 2, 4, 6, 9 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → 𝑆 ≤ (𝑆 ∨ (𝑇 ∨ 𝑈))) |
| 11 | 1 | dalemkehl 39624 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ HL) |
| 12 | 1 | dalemsea 39630 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ 𝐴) |
| 13 | 1 | dalemtea 39631 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ 𝐴) |
| 14 | 1 | dalemuea 39632 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ 𝐴) |
| 15 | 5, 3 | hlatjass 39370 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑆 ∨ 𝑇) ∨ 𝑈) = (𝑆 ∨ (𝑇 ∨ 𝑈))) |
| 16 | 11, 12, 13, 14, 15 | syl13anc 1374 | . . . . 5 ⊢ (𝜑 → ((𝑆 ∨ 𝑇) ∨ 𝑈) = (𝑆 ∨ (𝑇 ∨ 𝑈))) |
| 17 | 10, 16 | breqtrrd 5138 | . . . 4 ⊢ (𝜑 → 𝑆 ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) |
| 18 | dalemsly.z | . . . 4 ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) | |
| 19 | 17, 18 | breqtrrdi 5152 | . . 3 ⊢ (𝜑 → 𝑆 ≤ 𝑍) |
| 20 | 19 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑌 = 𝑍) → 𝑆 ≤ 𝑍) |
| 21 | simpr 484 | . 2 ⊢ ((𝜑 ∧ 𝑌 = 𝑍) → 𝑌 = 𝑍) | |
| 22 | 20, 21 | breqtrrd 5138 | 1 ⊢ ((𝜑 ∧ 𝑌 = 𝑍) → 𝑆 ≤ 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 lecple 17234 joincjn 18279 Latclat 18397 Atomscatm 39263 HLchlt 39350 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-proset 18262 df-poset 18281 df-lub 18312 df-glb 18313 df-join 18314 df-meet 18315 df-lat 18398 df-ats 39267 df-atl 39298 df-cvlat 39322 df-hlat 39351 |
| This theorem is referenced by: dalem21 39695 dalem23 39697 dalem24 39698 dalem25 39699 |
| Copyright terms: Public domain | W3C validator |