![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dalemsly | Structured version Visualization version GIF version |
Description: Lemma for dath 38911. Frequently-used utility lemma. (Contributed by NM, 15-Aug-2012.) |
Ref | Expression |
---|---|
dalema.ph | β’ (π β (((πΎ β HL β§ πΆ β (BaseβπΎ)) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (π β π β§ π β π) β§ ((Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π ) β§ Β¬ πΆ β€ (π β¨ π)) β§ (Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π)) β§ (πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π))))) |
dalemc.l | β’ β€ = (leβπΎ) |
dalemc.j | β’ β¨ = (joinβπΎ) |
dalemc.a | β’ π΄ = (AtomsβπΎ) |
dalemsly.z | β’ π = ((π β¨ π) β¨ π) |
Ref | Expression |
---|---|
dalemsly | β’ ((π β§ π = π) β π β€ π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalema.ph | . . . . . . 7 β’ (π β (((πΎ β HL β§ πΆ β (BaseβπΎ)) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (π β π β§ π β π) β§ ((Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π ) β§ Β¬ πΆ β€ (π β¨ π)) β§ (Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π)) β§ (πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π))))) | |
2 | 1 | dalemkelat 38799 | . . . . . 6 β’ (π β πΎ β Lat) |
3 | dalemc.a | . . . . . . 7 β’ π΄ = (AtomsβπΎ) | |
4 | 1, 3 | dalemseb 38817 | . . . . . 6 β’ (π β π β (BaseβπΎ)) |
5 | dalemc.j | . . . . . . 7 β’ β¨ = (joinβπΎ) | |
6 | 1, 5, 3 | dalemtjueb 38822 | . . . . . 6 β’ (π β (π β¨ π) β (BaseβπΎ)) |
7 | eqid 2731 | . . . . . . 7 β’ (BaseβπΎ) = (BaseβπΎ) | |
8 | dalemc.l | . . . . . . 7 β’ β€ = (leβπΎ) | |
9 | 7, 8, 5 | latlej1 18406 | . . . . . 6 β’ ((πΎ β Lat β§ π β (BaseβπΎ) β§ (π β¨ π) β (BaseβπΎ)) β π β€ (π β¨ (π β¨ π))) |
10 | 2, 4, 6, 9 | syl3anc 1370 | . . . . 5 β’ (π β π β€ (π β¨ (π β¨ π))) |
11 | 1 | dalemkehl 38798 | . . . . . 6 β’ (π β πΎ β HL) |
12 | 1 | dalemsea 38804 | . . . . . 6 β’ (π β π β π΄) |
13 | 1 | dalemtea 38805 | . . . . . 6 β’ (π β π β π΄) |
14 | 1 | dalemuea 38806 | . . . . . 6 β’ (π β π β π΄) |
15 | 5, 3 | hlatjass 38544 | . . . . . 6 β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β ((π β¨ π) β¨ π) = (π β¨ (π β¨ π))) |
16 | 11, 12, 13, 14, 15 | syl13anc 1371 | . . . . 5 β’ (π β ((π β¨ π) β¨ π) = (π β¨ (π β¨ π))) |
17 | 10, 16 | breqtrrd 5176 | . . . 4 β’ (π β π β€ ((π β¨ π) β¨ π)) |
18 | dalemsly.z | . . . 4 β’ π = ((π β¨ π) β¨ π) | |
19 | 17, 18 | breqtrrdi 5190 | . . 3 β’ (π β π β€ π) |
20 | 19 | adantr 480 | . 2 β’ ((π β§ π = π) β π β€ π) |
21 | simpr 484 | . 2 β’ ((π β§ π = π) β π = π) | |
22 | 20, 21 | breqtrrd 5176 | 1 β’ ((π β§ π = π) β π β€ π) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 class class class wbr 5148 βcfv 6543 (class class class)co 7412 Basecbs 17149 lecple 17209 joincjn 18269 Latclat 18389 Atomscatm 38437 HLchlt 38524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-proset 18253 df-poset 18271 df-lub 18304 df-glb 18305 df-join 18306 df-meet 18307 df-lat 18390 df-ats 38441 df-atl 38472 df-cvlat 38496 df-hlat 38525 |
This theorem is referenced by: dalem21 38869 dalem23 38871 dalem24 38872 dalem25 38873 |
Copyright terms: Public domain | W3C validator |