Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem1 Structured version   Visualization version   GIF version

Theorem dalem1 39653
Description: Lemma for dath 39730. Show the lines 𝑃𝑆 and 𝑄𝑇 are different. (Contributed by NM, 9-Aug-2012.)
Hypotheses
Ref Expression
dalema.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalemc.l = (le‘𝐾)
dalemc.j = (join‘𝐾)
dalemc.a 𝐴 = (Atoms‘𝐾)
dalem1.o 𝑂 = (LPlanes‘𝐾)
dalem1.y 𝑌 = ((𝑃 𝑄) 𝑅)
Assertion
Ref Expression
dalem1 (𝜑 → (𝑃 𝑆) ≠ (𝑄 𝑇))

Proof of Theorem dalem1
StepHypRef Expression
1 dalema.ph . . 3 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
21dalemclpjs 39628 . 2 (𝜑𝐶 (𝑃 𝑆))
31dalem-clpjq 39631 . . . . . 6 (𝜑 → ¬ 𝐶 (𝑃 𝑄))
43adantr 480 . . . . 5 ((𝜑 ∧ (𝑃 𝑆) = (𝑄 𝑇)) → ¬ 𝐶 (𝑃 𝑄))
51dalemkehl 39617 . . . . . . . . . 10 (𝜑𝐾 ∈ HL)
61dalempea 39620 . . . . . . . . . 10 (𝜑𝑃𝐴)
71dalemsea 39623 . . . . . . . . . 10 (𝜑𝑆𝐴)
8 dalemc.l . . . . . . . . . . 11 = (le‘𝐾)
9 dalemc.j . . . . . . . . . . 11 = (join‘𝐾)
10 dalemc.a . . . . . . . . . . 11 𝐴 = (Atoms‘𝐾)
118, 9, 10hlatlej1 39368 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) → 𝑃 (𝑃 𝑆))
125, 6, 7, 11syl3anc 1373 . . . . . . . . 9 (𝜑𝑃 (𝑃 𝑆))
1312adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑃 𝑆) = (𝑄 𝑇)) → 𝑃 (𝑃 𝑆))
141dalemqea 39621 . . . . . . . . . . 11 (𝜑𝑄𝐴)
151dalemtea 39624 . . . . . . . . . . 11 (𝜑𝑇𝐴)
168, 9, 10hlatlej1 39368 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴) → 𝑄 (𝑄 𝑇))
175, 14, 15, 16syl3anc 1373 . . . . . . . . . 10 (𝜑𝑄 (𝑄 𝑇))
1817adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑃 𝑆) = (𝑄 𝑇)) → 𝑄 (𝑄 𝑇))
19 simpr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑃 𝑆) = (𝑄 𝑇)) → (𝑃 𝑆) = (𝑄 𝑇))
2018, 19breqtrrd 5135 . . . . . . . 8 ((𝜑 ∧ (𝑃 𝑆) = (𝑄 𝑇)) → 𝑄 (𝑃 𝑆))
211dalemkelat 39618 . . . . . . . . . 10 (𝜑𝐾 ∈ Lat)
221, 10dalempeb 39633 . . . . . . . . . 10 (𝜑𝑃 ∈ (Base‘𝐾))
231, 10dalemqeb 39634 . . . . . . . . . 10 (𝜑𝑄 ∈ (Base‘𝐾))
24 eqid 2729 . . . . . . . . . . . 12 (Base‘𝐾) = (Base‘𝐾)
2524, 9, 10hlatjcl 39360 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) → (𝑃 𝑆) ∈ (Base‘𝐾))
265, 6, 7, 25syl3anc 1373 . . . . . . . . . 10 (𝜑 → (𝑃 𝑆) ∈ (Base‘𝐾))
2724, 8, 9latjle12 18409 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾))) → ((𝑃 (𝑃 𝑆) ∧ 𝑄 (𝑃 𝑆)) ↔ (𝑃 𝑄) (𝑃 𝑆)))
2821, 22, 23, 26, 27syl13anc 1374 . . . . . . . . 9 (𝜑 → ((𝑃 (𝑃 𝑆) ∧ 𝑄 (𝑃 𝑆)) ↔ (𝑃 𝑄) (𝑃 𝑆)))
2928adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑃 𝑆) = (𝑄 𝑇)) → ((𝑃 (𝑃 𝑆) ∧ 𝑄 (𝑃 𝑆)) ↔ (𝑃 𝑄) (𝑃 𝑆)))
3013, 20, 29mpbi2and 712 . . . . . . 7 ((𝜑 ∧ (𝑃 𝑆) = (𝑄 𝑇)) → (𝑃 𝑄) (𝑃 𝑆))
311dalemrea 39622 . . . . . . . . . 10 (𝜑𝑅𝐴)
321dalemyeo 39626 . . . . . . . . . 10 (𝜑𝑌𝑂)
33 dalem1.o . . . . . . . . . . 11 𝑂 = (LPlanes‘𝐾)
34 dalem1.y . . . . . . . . . . 11 𝑌 = ((𝑃 𝑄) 𝑅)
359, 10, 33, 34lplnri1 39547 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑌𝑂) → 𝑃𝑄)
365, 6, 14, 31, 32, 35syl131anc 1385 . . . . . . . . 9 (𝜑𝑃𝑄)
378, 9, 10ps-1 39471 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃𝐴𝑆𝐴)) → ((𝑃 𝑄) (𝑃 𝑆) ↔ (𝑃 𝑄) = (𝑃 𝑆)))
385, 6, 14, 36, 6, 7, 37syl132anc 1390 . . . . . . . 8 (𝜑 → ((𝑃 𝑄) (𝑃 𝑆) ↔ (𝑃 𝑄) = (𝑃 𝑆)))
3938adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑃 𝑆) = (𝑄 𝑇)) → ((𝑃 𝑄) (𝑃 𝑆) ↔ (𝑃 𝑄) = (𝑃 𝑆)))
4030, 39mpbid 232 . . . . . 6 ((𝜑 ∧ (𝑃 𝑆) = (𝑄 𝑇)) → (𝑃 𝑄) = (𝑃 𝑆))
4140breq2d 5119 . . . . 5 ((𝜑 ∧ (𝑃 𝑆) = (𝑄 𝑇)) → (𝐶 (𝑃 𝑄) ↔ 𝐶 (𝑃 𝑆)))
424, 41mtbid 324 . . . 4 ((𝜑 ∧ (𝑃 𝑆) = (𝑄 𝑇)) → ¬ 𝐶 (𝑃 𝑆))
4342ex 412 . . 3 (𝜑 → ((𝑃 𝑆) = (𝑄 𝑇) → ¬ 𝐶 (𝑃 𝑆)))
4443necon2ad 2940 . 2 (𝜑 → (𝐶 (𝑃 𝑆) → (𝑃 𝑆) ≠ (𝑄 𝑇)))
452, 44mpd 15 1 (𝜑 → (𝑃 𝑆) ≠ (𝑄 𝑇))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  joincjn 18272  Latclat 18390  Atomscatm 39256  HLchlt 39343  LPlanesclpl 39486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-llines 39492  df-lplanes 39493
This theorem is referenced by:  dalemcea  39654  dalem2  39655
  Copyright terms: Public domain W3C validator