Proof of Theorem dalem1
Step | Hyp | Ref
| Expression |
1 | | dalema.ph |
. . 3
⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
2 | 1 | dalemclpjs 37690 |
. 2
⊢ (𝜑 → 𝐶 ≤ (𝑃 ∨ 𝑆)) |
3 | 1 | dalem-clpjq 37693 |
. . . . . 6
⊢ (𝜑 → ¬ 𝐶 ≤ (𝑃 ∨ 𝑄)) |
4 | 3 | adantr 482 |
. . . . 5
⊢ ((𝜑 ∧ (𝑃 ∨ 𝑆) = (𝑄 ∨ 𝑇)) → ¬ 𝐶 ≤ (𝑃 ∨ 𝑄)) |
5 | 1 | dalemkehl 37679 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ HL) |
6 | 1 | dalempea 37682 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 ∈ 𝐴) |
7 | 1 | dalemsea 37685 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 ∈ 𝐴) |
8 | | dalemc.l |
. . . . . . . . . . 11
⊢ ≤ =
(le‘𝐾) |
9 | | dalemc.j |
. . . . . . . . . . 11
⊢ ∨ =
(join‘𝐾) |
10 | | dalemc.a |
. . . . . . . . . . 11
⊢ 𝐴 = (Atoms‘𝐾) |
11 | 8, 9, 10 | hlatlej1 37431 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → 𝑃 ≤ (𝑃 ∨ 𝑆)) |
12 | 5, 6, 7, 11 | syl3anc 1371 |
. . . . . . . . 9
⊢ (𝜑 → 𝑃 ≤ (𝑃 ∨ 𝑆)) |
13 | 12 | adantr 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑃 ∨ 𝑆) = (𝑄 ∨ 𝑇)) → 𝑃 ≤ (𝑃 ∨ 𝑆)) |
14 | 1 | dalemqea 37683 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑄 ∈ 𝐴) |
15 | 1 | dalemtea 37686 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑇 ∈ 𝐴) |
16 | 8, 9, 10 | hlatlej1 37431 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → 𝑄 ≤ (𝑄 ∨ 𝑇)) |
17 | 5, 14, 15, 16 | syl3anc 1371 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑄 ≤ (𝑄 ∨ 𝑇)) |
18 | 17 | adantr 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑃 ∨ 𝑆) = (𝑄 ∨ 𝑇)) → 𝑄 ≤ (𝑄 ∨ 𝑇)) |
19 | | simpr 486 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑃 ∨ 𝑆) = (𝑄 ∨ 𝑇)) → (𝑃 ∨ 𝑆) = (𝑄 ∨ 𝑇)) |
20 | 18, 19 | breqtrrd 5109 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑃 ∨ 𝑆) = (𝑄 ∨ 𝑇)) → 𝑄 ≤ (𝑃 ∨ 𝑆)) |
21 | 1 | dalemkelat 37680 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ Lat) |
22 | 1, 10 | dalempeb 37695 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 ∈ (Base‘𝐾)) |
23 | 1, 10 | dalemqeb 37696 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑄 ∈ (Base‘𝐾)) |
24 | | eqid 2736 |
. . . . . . . . . . . 12
⊢
(Base‘𝐾) =
(Base‘𝐾) |
25 | 24, 9, 10 | hlatjcl 37423 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) |
26 | 5, 6, 7, 25 | syl3anc 1371 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) |
27 | 24, 8, 9 | latjle12 18213 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾))) → ((𝑃 ≤ (𝑃 ∨ 𝑆) ∧ 𝑄 ≤ (𝑃 ∨ 𝑆)) ↔ (𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑆))) |
28 | 21, 22, 23, 26, 27 | syl13anc 1372 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑃 ≤ (𝑃 ∨ 𝑆) ∧ 𝑄 ≤ (𝑃 ∨ 𝑆)) ↔ (𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑆))) |
29 | 28 | adantr 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑃 ∨ 𝑆) = (𝑄 ∨ 𝑇)) → ((𝑃 ≤ (𝑃 ∨ 𝑆) ∧ 𝑄 ≤ (𝑃 ∨ 𝑆)) ↔ (𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑆))) |
30 | 13, 20, 29 | mpbi2and 710 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑃 ∨ 𝑆) = (𝑄 ∨ 𝑇)) → (𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑆)) |
31 | 1 | dalemrea 37684 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ 𝐴) |
32 | 1 | dalemyeo 37688 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌 ∈ 𝑂) |
33 | | dalem1.o |
. . . . . . . . . . 11
⊢ 𝑂 = (LPlanes‘𝐾) |
34 | | dalem1.y |
. . . . . . . . . . 11
⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
35 | 9, 10, 33, 34 | lplnri1 37609 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑌 ∈ 𝑂) → 𝑃 ≠ 𝑄) |
36 | 5, 6, 14, 31, 32, 35 | syl131anc 1383 |
. . . . . . . . 9
⊢ (𝜑 → 𝑃 ≠ 𝑄) |
37 | 8, 9, 10 | ps-1 37533 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑆) ↔ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑆))) |
38 | 5, 6, 14, 36, 6, 7, 37 | syl132anc 1388 |
. . . . . . . 8
⊢ (𝜑 → ((𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑆) ↔ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑆))) |
39 | 38 | adantr 482 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑃 ∨ 𝑆) = (𝑄 ∨ 𝑇)) → ((𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑆) ↔ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑆))) |
40 | 30, 39 | mpbid 231 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑃 ∨ 𝑆) = (𝑄 ∨ 𝑇)) → (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑆)) |
41 | 40 | breq2d 5093 |
. . . . 5
⊢ ((𝜑 ∧ (𝑃 ∨ 𝑆) = (𝑄 ∨ 𝑇)) → (𝐶 ≤ (𝑃 ∨ 𝑄) ↔ 𝐶 ≤ (𝑃 ∨ 𝑆))) |
42 | 4, 41 | mtbid 324 |
. . . 4
⊢ ((𝜑 ∧ (𝑃 ∨ 𝑆) = (𝑄 ∨ 𝑇)) → ¬ 𝐶 ≤ (𝑃 ∨ 𝑆)) |
43 | 42 | ex 414 |
. . 3
⊢ (𝜑 → ((𝑃 ∨ 𝑆) = (𝑄 ∨ 𝑇) → ¬ 𝐶 ≤ (𝑃 ∨ 𝑆))) |
44 | 43 | necon2ad 2956 |
. 2
⊢ (𝜑 → (𝐶 ≤ (𝑃 ∨ 𝑆) → (𝑃 ∨ 𝑆) ≠ (𝑄 ∨ 𝑇))) |
45 | 2, 44 | mpd 15 |
1
⊢ (𝜑 → (𝑃 ∨ 𝑆) ≠ (𝑄 ∨ 𝑇)) |