Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem1 Structured version   Visualization version   GIF version

Theorem dalem1 39660
Description: Lemma for dath 39737. Show the lines 𝑃𝑆 and 𝑄𝑇 are different. (Contributed by NM, 9-Aug-2012.)
Hypotheses
Ref Expression
dalema.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalemc.l = (le‘𝐾)
dalemc.j = (join‘𝐾)
dalemc.a 𝐴 = (Atoms‘𝐾)
dalem1.o 𝑂 = (LPlanes‘𝐾)
dalem1.y 𝑌 = ((𝑃 𝑄) 𝑅)
Assertion
Ref Expression
dalem1 (𝜑 → (𝑃 𝑆) ≠ (𝑄 𝑇))

Proof of Theorem dalem1
StepHypRef Expression
1 dalema.ph . . 3 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
21dalemclpjs 39635 . 2 (𝜑𝐶 (𝑃 𝑆))
31dalem-clpjq 39638 . . . . . 6 (𝜑 → ¬ 𝐶 (𝑃 𝑄))
43adantr 480 . . . . 5 ((𝜑 ∧ (𝑃 𝑆) = (𝑄 𝑇)) → ¬ 𝐶 (𝑃 𝑄))
51dalemkehl 39624 . . . . . . . . . 10 (𝜑𝐾 ∈ HL)
61dalempea 39627 . . . . . . . . . 10 (𝜑𝑃𝐴)
71dalemsea 39630 . . . . . . . . . 10 (𝜑𝑆𝐴)
8 dalemc.l . . . . . . . . . . 11 = (le‘𝐾)
9 dalemc.j . . . . . . . . . . 11 = (join‘𝐾)
10 dalemc.a . . . . . . . . . . 11 𝐴 = (Atoms‘𝐾)
118, 9, 10hlatlej1 39375 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) → 𝑃 (𝑃 𝑆))
125, 6, 7, 11syl3anc 1373 . . . . . . . . 9 (𝜑𝑃 (𝑃 𝑆))
1312adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑃 𝑆) = (𝑄 𝑇)) → 𝑃 (𝑃 𝑆))
141dalemqea 39628 . . . . . . . . . . 11 (𝜑𝑄𝐴)
151dalemtea 39631 . . . . . . . . . . 11 (𝜑𝑇𝐴)
168, 9, 10hlatlej1 39375 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴) → 𝑄 (𝑄 𝑇))
175, 14, 15, 16syl3anc 1373 . . . . . . . . . 10 (𝜑𝑄 (𝑄 𝑇))
1817adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑃 𝑆) = (𝑄 𝑇)) → 𝑄 (𝑄 𝑇))
19 simpr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑃 𝑆) = (𝑄 𝑇)) → (𝑃 𝑆) = (𝑄 𝑇))
2018, 19breqtrrd 5138 . . . . . . . 8 ((𝜑 ∧ (𝑃 𝑆) = (𝑄 𝑇)) → 𝑄 (𝑃 𝑆))
211dalemkelat 39625 . . . . . . . . . 10 (𝜑𝐾 ∈ Lat)
221, 10dalempeb 39640 . . . . . . . . . 10 (𝜑𝑃 ∈ (Base‘𝐾))
231, 10dalemqeb 39641 . . . . . . . . . 10 (𝜑𝑄 ∈ (Base‘𝐾))
24 eqid 2730 . . . . . . . . . . . 12 (Base‘𝐾) = (Base‘𝐾)
2524, 9, 10hlatjcl 39367 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) → (𝑃 𝑆) ∈ (Base‘𝐾))
265, 6, 7, 25syl3anc 1373 . . . . . . . . . 10 (𝜑 → (𝑃 𝑆) ∈ (Base‘𝐾))
2724, 8, 9latjle12 18416 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾))) → ((𝑃 (𝑃 𝑆) ∧ 𝑄 (𝑃 𝑆)) ↔ (𝑃 𝑄) (𝑃 𝑆)))
2821, 22, 23, 26, 27syl13anc 1374 . . . . . . . . 9 (𝜑 → ((𝑃 (𝑃 𝑆) ∧ 𝑄 (𝑃 𝑆)) ↔ (𝑃 𝑄) (𝑃 𝑆)))
2928adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑃 𝑆) = (𝑄 𝑇)) → ((𝑃 (𝑃 𝑆) ∧ 𝑄 (𝑃 𝑆)) ↔ (𝑃 𝑄) (𝑃 𝑆)))
3013, 20, 29mpbi2and 712 . . . . . . 7 ((𝜑 ∧ (𝑃 𝑆) = (𝑄 𝑇)) → (𝑃 𝑄) (𝑃 𝑆))
311dalemrea 39629 . . . . . . . . . 10 (𝜑𝑅𝐴)
321dalemyeo 39633 . . . . . . . . . 10 (𝜑𝑌𝑂)
33 dalem1.o . . . . . . . . . . 11 𝑂 = (LPlanes‘𝐾)
34 dalem1.y . . . . . . . . . . 11 𝑌 = ((𝑃 𝑄) 𝑅)
359, 10, 33, 34lplnri1 39554 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑌𝑂) → 𝑃𝑄)
365, 6, 14, 31, 32, 35syl131anc 1385 . . . . . . . . 9 (𝜑𝑃𝑄)
378, 9, 10ps-1 39478 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃𝐴𝑆𝐴)) → ((𝑃 𝑄) (𝑃 𝑆) ↔ (𝑃 𝑄) = (𝑃 𝑆)))
385, 6, 14, 36, 6, 7, 37syl132anc 1390 . . . . . . . 8 (𝜑 → ((𝑃 𝑄) (𝑃 𝑆) ↔ (𝑃 𝑄) = (𝑃 𝑆)))
3938adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑃 𝑆) = (𝑄 𝑇)) → ((𝑃 𝑄) (𝑃 𝑆) ↔ (𝑃 𝑄) = (𝑃 𝑆)))
4030, 39mpbid 232 . . . . . 6 ((𝜑 ∧ (𝑃 𝑆) = (𝑄 𝑇)) → (𝑃 𝑄) = (𝑃 𝑆))
4140breq2d 5122 . . . . 5 ((𝜑 ∧ (𝑃 𝑆) = (𝑄 𝑇)) → (𝐶 (𝑃 𝑄) ↔ 𝐶 (𝑃 𝑆)))
424, 41mtbid 324 . . . 4 ((𝜑 ∧ (𝑃 𝑆) = (𝑄 𝑇)) → ¬ 𝐶 (𝑃 𝑆))
4342ex 412 . . 3 (𝜑 → ((𝑃 𝑆) = (𝑄 𝑇) → ¬ 𝐶 (𝑃 𝑆)))
4443necon2ad 2941 . 2 (𝜑 → (𝐶 (𝑃 𝑆) → (𝑃 𝑆) ≠ (𝑄 𝑇)))
452, 44mpd 15 1 (𝜑 → (𝑃 𝑆) ≠ (𝑄 𝑇))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5110  cfv 6514  (class class class)co 7390  Basecbs 17186  lecple 17234  joincjn 18279  Latclat 18397  Atomscatm 39263  HLchlt 39350  LPlanesclpl 39493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-lat 18398  df-clat 18465  df-oposet 39176  df-ol 39178  df-oml 39179  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-llines 39499  df-lplanes 39500
This theorem is referenced by:  dalemcea  39661  dalem2  39662
  Copyright terms: Public domain W3C validator