Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2lplnmj Structured version   Visualization version   GIF version

Theorem 2lplnmj 39624
Description: The meet of two lattice planes is a lattice line iff their join is a lattice volume. (Contributed by NM, 13-Jul-2012.)
Hypotheses
Ref Expression
2lplnmj.j = (join‘𝐾)
2lplnmj.m = (meet‘𝐾)
2lplnmj.n 𝑁 = (LLines‘𝐾)
2lplnmj.p 𝑃 = (LPlanes‘𝐾)
2lplnmj.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
2lplnmj ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → ((𝑋 𝑌) ∈ 𝑁 ↔ (𝑋 𝑌) ∈ 𝑉))

Proof of Theorem 2lplnmj
StepHypRef Expression
1 simp1 1137 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → 𝐾 ∈ HL)
2 eqid 2737 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
3 2lplnmj.p . . . . 5 𝑃 = (LPlanes‘𝐾)
42, 3lplnbase 39536 . . . 4 (𝑋𝑃𝑋 ∈ (Base‘𝐾))
543ad2ant2 1135 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → 𝑋 ∈ (Base‘𝐾))
62, 3lplnbase 39536 . . . 4 (𝑌𝑃𝑌 ∈ (Base‘𝐾))
763ad2ant3 1136 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → 𝑌 ∈ (Base‘𝐾))
8 2lplnmj.j . . . 4 = (join‘𝐾)
9 2lplnmj.m . . . 4 = (meet‘𝐾)
10 eqid 2737 . . . 4 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
112, 8, 9, 10cvrexch 39422 . . 3 ((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → ((𝑋 𝑌)( ⋖ ‘𝐾)𝑌𝑋( ⋖ ‘𝐾)(𝑋 𝑌)))
121, 5, 7, 11syl3anc 1373 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → ((𝑋 𝑌)( ⋖ ‘𝐾)𝑌𝑋( ⋖ ‘𝐾)(𝑋 𝑌)))
13 simpl1 1192 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌) ∈ 𝑁) → 𝐾 ∈ HL)
14 simpr 484 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌) ∈ 𝑁) → (𝑋 𝑌) ∈ 𝑁)
15 simpl3 1194 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌) ∈ 𝑁) → 𝑌𝑃)
16 hllat 39364 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
17 eqid 2737 . . . . . . 7 (le‘𝐾) = (le‘𝐾)
182, 17, 9latmle2 18510 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌)(le‘𝐾)𝑌)
1916, 4, 6, 18syl3an 1161 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝑋 𝑌)(le‘𝐾)𝑌)
2019adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌) ∈ 𝑁) → (𝑋 𝑌)(le‘𝐾)𝑌)
21 2lplnmj.n . . . . 5 𝑁 = (LLines‘𝐾)
2217, 10, 21, 3llncvrlpln2 39559 . . . 4 (((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ 𝑁𝑌𝑃) ∧ (𝑋 𝑌)(le‘𝐾)𝑌) → (𝑋 𝑌)( ⋖ ‘𝐾)𝑌)
2313, 14, 15, 20, 22syl31anc 1375 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌) ∈ 𝑁) → (𝑋 𝑌)( ⋖ ‘𝐾)𝑌)
24 simpl3 1194 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌)( ⋖ ‘𝐾)𝑌) → 𝑌𝑃)
252, 9latmcl 18485 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌) ∈ (Base‘𝐾))
2616, 4, 6, 25syl3an 1161 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝑋 𝑌) ∈ (Base‘𝐾))
271, 26, 73jca 1129 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)))
282, 10, 21, 3llncvrlpln 39560 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) ∧ (𝑋 𝑌)( ⋖ ‘𝐾)𝑌) → ((𝑋 𝑌) ∈ 𝑁𝑌𝑃))
2927, 28sylan 580 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌)( ⋖ ‘𝐾)𝑌) → ((𝑋 𝑌) ∈ 𝑁𝑌𝑃))
3024, 29mpbird 257 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌)( ⋖ ‘𝐾)𝑌) → (𝑋 𝑌) ∈ 𝑁)
3123, 30impbida 801 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → ((𝑋 𝑌) ∈ 𝑁 ↔ (𝑋 𝑌)( ⋖ ‘𝐾)𝑌))
32 simpl1 1192 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌) ∈ 𝑉) → 𝐾 ∈ HL)
33 simpl2 1193 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌) ∈ 𝑉) → 𝑋𝑃)
34 simpr 484 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌) ∈ 𝑉) → (𝑋 𝑌) ∈ 𝑉)
352, 17, 8latlej1 18493 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → 𝑋(le‘𝐾)(𝑋 𝑌))
3616, 4, 6, 35syl3an 1161 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → 𝑋(le‘𝐾)(𝑋 𝑌))
3736adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌) ∈ 𝑉) → 𝑋(le‘𝐾)(𝑋 𝑌))
38 2lplnmj.v . . . . 5 𝑉 = (LVols‘𝐾)
3917, 10, 3, 38lplncvrlvol2 39617 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃 ∧ (𝑋 𝑌) ∈ 𝑉) ∧ 𝑋(le‘𝐾)(𝑋 𝑌)) → 𝑋( ⋖ ‘𝐾)(𝑋 𝑌))
4032, 33, 34, 37, 39syl31anc 1375 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌) ∈ 𝑉) → 𝑋( ⋖ ‘𝐾)(𝑋 𝑌))
41 simpl2 1193 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ 𝑋( ⋖ ‘𝐾)(𝑋 𝑌)) → 𝑋𝑃)
422, 8latjcl 18484 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌) ∈ (Base‘𝐾))
4316, 4, 6, 42syl3an 1161 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝑋 𝑌) ∈ (Base‘𝐾))
441, 5, 433jca 1129 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾) ∧ (𝑋 𝑌) ∈ (Base‘𝐾)))
452, 10, 3, 38lplncvrlvol 39618 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾) ∧ (𝑋 𝑌) ∈ (Base‘𝐾)) ∧ 𝑋( ⋖ ‘𝐾)(𝑋 𝑌)) → (𝑋𝑃 ↔ (𝑋 𝑌) ∈ 𝑉))
4644, 45sylan 580 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ 𝑋( ⋖ ‘𝐾)(𝑋 𝑌)) → (𝑋𝑃 ↔ (𝑋 𝑌) ∈ 𝑉))
4741, 46mpbid 232 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ 𝑋( ⋖ ‘𝐾)(𝑋 𝑌)) → (𝑋 𝑌) ∈ 𝑉)
4840, 47impbida 801 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → ((𝑋 𝑌) ∈ 𝑉𝑋( ⋖ ‘𝐾)(𝑋 𝑌)))
4912, 31, 483bitr4d 311 1 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → ((𝑋 𝑌) ∈ 𝑁 ↔ (𝑋 𝑌) ∈ 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108   class class class wbr 5143  cfv 6561  (class class class)co 7431  Basecbs 17247  lecple 17304  joincjn 18357  meetcmee 18358  Latclat 18476  ccvr 39263  HLchlt 39351  LLinesclln 39493  LPlanesclpl 39494  LVolsclvol 39495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-proset 18340  df-poset 18359  df-plt 18375  df-lub 18391  df-glb 18392  df-join 18393  df-meet 18394  df-p0 18470  df-lat 18477  df-clat 18544  df-oposet 39177  df-ol 39179  df-oml 39180  df-covers 39267  df-ats 39268  df-atl 39299  df-cvlat 39323  df-hlat 39352  df-llines 39500  df-lplanes 39501  df-lvols 39502
This theorem is referenced by:  dalem15  39680
  Copyright terms: Public domain W3C validator