Proof of Theorem 2lplnmj
Step | Hyp | Ref
| Expression |
1 | | simp1 1137 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → 𝐾 ∈ HL) |
2 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝐾) =
(Base‘𝐾) |
3 | | 2lplnmj.p |
. . . . 5
⊢ 𝑃 = (LPlanes‘𝐾) |
4 | 2, 3 | lplnbase 37191 |
. . . 4
⊢ (𝑋 ∈ 𝑃 → 𝑋 ∈ (Base‘𝐾)) |
5 | 4 | 3ad2ant2 1135 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → 𝑋 ∈ (Base‘𝐾)) |
6 | 2, 3 | lplnbase 37191 |
. . . 4
⊢ (𝑌 ∈ 𝑃 → 𝑌 ∈ (Base‘𝐾)) |
7 | 6 | 3ad2ant3 1136 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → 𝑌 ∈ (Base‘𝐾)) |
8 | | 2lplnmj.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
9 | | 2lplnmj.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
10 | | eqid 2738 |
. . . 4
⊢ ( ⋖
‘𝐾) = ( ⋖
‘𝐾) |
11 | 2, 8, 9, 10 | cvrexch 37077 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → ((𝑋 ∧ 𝑌)( ⋖ ‘𝐾)𝑌 ↔ 𝑋( ⋖ ‘𝐾)(𝑋 ∨ 𝑌))) |
12 | 1, 5, 7, 11 | syl3anc 1372 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → ((𝑋 ∧ 𝑌)( ⋖ ‘𝐾)𝑌 ↔ 𝑋( ⋖ ‘𝐾)(𝑋 ∨ 𝑌))) |
13 | | simpl1 1192 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑋 ∧ 𝑌) ∈ 𝑁) → 𝐾 ∈ HL) |
14 | | simpr 488 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑋 ∧ 𝑌) ∈ 𝑁) → (𝑋 ∧ 𝑌) ∈ 𝑁) |
15 | | simpl3 1194 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑋 ∧ 𝑌) ∈ 𝑁) → 𝑌 ∈ 𝑃) |
16 | | hllat 37020 |
. . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
17 | | eqid 2738 |
. . . . . . 7
⊢
(le‘𝐾) =
(le‘𝐾) |
18 | 2, 17, 9 | latmle2 17803 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 ∧ 𝑌)(le‘𝐾)𝑌) |
19 | 16, 4, 6, 18 | syl3an 1161 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (𝑋 ∧ 𝑌)(le‘𝐾)𝑌) |
20 | 19 | adantr 484 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑋 ∧ 𝑌) ∈ 𝑁) → (𝑋 ∧ 𝑌)(le‘𝐾)𝑌) |
21 | | 2lplnmj.n |
. . . . 5
⊢ 𝑁 = (LLines‘𝐾) |
22 | 17, 10, 21, 3 | llncvrlpln2 37214 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∧ 𝑌) ∈ 𝑁 ∧ 𝑌 ∈ 𝑃) ∧ (𝑋 ∧ 𝑌)(le‘𝐾)𝑌) → (𝑋 ∧ 𝑌)( ⋖ ‘𝐾)𝑌) |
23 | 13, 14, 15, 20, 22 | syl31anc 1374 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑋 ∧ 𝑌) ∈ 𝑁) → (𝑋 ∧ 𝑌)( ⋖ ‘𝐾)𝑌) |
24 | | simpl3 1194 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑋 ∧ 𝑌)( ⋖ ‘𝐾)𝑌) → 𝑌 ∈ 𝑃) |
25 | 2, 9 | latmcl 17778 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 ∧ 𝑌) ∈ (Base‘𝐾)) |
26 | 16, 4, 6, 25 | syl3an 1161 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (𝑋 ∧ 𝑌) ∈ (Base‘𝐾)) |
27 | 1, 26, 7 | 3jca 1129 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (𝐾 ∈ HL ∧ (𝑋 ∧ 𝑌) ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾))) |
28 | 2, 10, 21, 3 | llncvrlpln 37215 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∧ 𝑌) ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) ∧ (𝑋 ∧ 𝑌)( ⋖ ‘𝐾)𝑌) → ((𝑋 ∧ 𝑌) ∈ 𝑁 ↔ 𝑌 ∈ 𝑃)) |
29 | 27, 28 | sylan 583 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑋 ∧ 𝑌)( ⋖ ‘𝐾)𝑌) → ((𝑋 ∧ 𝑌) ∈ 𝑁 ↔ 𝑌 ∈ 𝑃)) |
30 | 24, 29 | mpbird 260 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑋 ∧ 𝑌)( ⋖ ‘𝐾)𝑌) → (𝑋 ∧ 𝑌) ∈ 𝑁) |
31 | 23, 30 | impbida 801 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → ((𝑋 ∧ 𝑌) ∈ 𝑁 ↔ (𝑋 ∧ 𝑌)( ⋖ ‘𝐾)𝑌)) |
32 | | simpl1 1192 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑋 ∨ 𝑌) ∈ 𝑉) → 𝐾 ∈ HL) |
33 | | simpl2 1193 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑋 ∨ 𝑌) ∈ 𝑉) → 𝑋 ∈ 𝑃) |
34 | | simpr 488 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑋 ∨ 𝑌) ∈ 𝑉) → (𝑋 ∨ 𝑌) ∈ 𝑉) |
35 | 2, 17, 8 | latlej1 17786 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → 𝑋(le‘𝐾)(𝑋 ∨ 𝑌)) |
36 | 16, 4, 6, 35 | syl3an 1161 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → 𝑋(le‘𝐾)(𝑋 ∨ 𝑌)) |
37 | 36 | adantr 484 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑋 ∨ 𝑌) ∈ 𝑉) → 𝑋(le‘𝐾)(𝑋 ∨ 𝑌)) |
38 | | 2lplnmj.v |
. . . . 5
⊢ 𝑉 = (LVols‘𝐾) |
39 | 17, 10, 3, 38 | lplncvrlvol2 37272 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ (𝑋 ∨ 𝑌) ∈ 𝑉) ∧ 𝑋(le‘𝐾)(𝑋 ∨ 𝑌)) → 𝑋( ⋖ ‘𝐾)(𝑋 ∨ 𝑌)) |
40 | 32, 33, 34, 37, 39 | syl31anc 1374 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑋 ∨ 𝑌) ∈ 𝑉) → 𝑋( ⋖ ‘𝐾)(𝑋 ∨ 𝑌)) |
41 | | simpl2 1193 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋( ⋖ ‘𝐾)(𝑋 ∨ 𝑌)) → 𝑋 ∈ 𝑃) |
42 | 2, 8 | latjcl 17777 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 ∨ 𝑌) ∈ (Base‘𝐾)) |
43 | 16, 4, 6, 42 | syl3an 1161 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (𝑋 ∨ 𝑌) ∈ (Base‘𝐾)) |
44 | 1, 5, 43 | 3jca 1129 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾) ∧ (𝑋 ∨ 𝑌) ∈ (Base‘𝐾))) |
45 | 2, 10, 3, 38 | lplncvrlvol 37273 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾) ∧ (𝑋 ∨ 𝑌) ∈ (Base‘𝐾)) ∧ 𝑋( ⋖ ‘𝐾)(𝑋 ∨ 𝑌)) → (𝑋 ∈ 𝑃 ↔ (𝑋 ∨ 𝑌) ∈ 𝑉)) |
46 | 44, 45 | sylan 583 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋( ⋖ ‘𝐾)(𝑋 ∨ 𝑌)) → (𝑋 ∈ 𝑃 ↔ (𝑋 ∨ 𝑌) ∈ 𝑉)) |
47 | 41, 46 | mpbid 235 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋( ⋖ ‘𝐾)(𝑋 ∨ 𝑌)) → (𝑋 ∨ 𝑌) ∈ 𝑉) |
48 | 40, 47 | impbida 801 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → ((𝑋 ∨ 𝑌) ∈ 𝑉 ↔ 𝑋( ⋖ ‘𝐾)(𝑋 ∨ 𝑌))) |
49 | 12, 31, 48 | 3bitr4d 314 |
1
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → ((𝑋 ∧ 𝑌) ∈ 𝑁 ↔ (𝑋 ∨ 𝑌) ∈ 𝑉)) |