Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2lplnmj Structured version   Visualization version   GIF version

Theorem 2lplnmj 39616
Description: The meet of two lattice planes is a lattice line iff their join is a lattice volume. (Contributed by NM, 13-Jul-2012.)
Hypotheses
Ref Expression
2lplnmj.j = (join‘𝐾)
2lplnmj.m = (meet‘𝐾)
2lplnmj.n 𝑁 = (LLines‘𝐾)
2lplnmj.p 𝑃 = (LPlanes‘𝐾)
2lplnmj.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
2lplnmj ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → ((𝑋 𝑌) ∈ 𝑁 ↔ (𝑋 𝑌) ∈ 𝑉))

Proof of Theorem 2lplnmj
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → 𝐾 ∈ HL)
2 eqid 2729 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
3 2lplnmj.p . . . . 5 𝑃 = (LPlanes‘𝐾)
42, 3lplnbase 39528 . . . 4 (𝑋𝑃𝑋 ∈ (Base‘𝐾))
543ad2ant2 1134 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → 𝑋 ∈ (Base‘𝐾))
62, 3lplnbase 39528 . . . 4 (𝑌𝑃𝑌 ∈ (Base‘𝐾))
763ad2ant3 1135 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → 𝑌 ∈ (Base‘𝐾))
8 2lplnmj.j . . . 4 = (join‘𝐾)
9 2lplnmj.m . . . 4 = (meet‘𝐾)
10 eqid 2729 . . . 4 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
112, 8, 9, 10cvrexch 39414 . . 3 ((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → ((𝑋 𝑌)( ⋖ ‘𝐾)𝑌𝑋( ⋖ ‘𝐾)(𝑋 𝑌)))
121, 5, 7, 11syl3anc 1373 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → ((𝑋 𝑌)( ⋖ ‘𝐾)𝑌𝑋( ⋖ ‘𝐾)(𝑋 𝑌)))
13 simpl1 1192 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌) ∈ 𝑁) → 𝐾 ∈ HL)
14 simpr 484 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌) ∈ 𝑁) → (𝑋 𝑌) ∈ 𝑁)
15 simpl3 1194 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌) ∈ 𝑁) → 𝑌𝑃)
16 hllat 39356 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
17 eqid 2729 . . . . . . 7 (le‘𝐾) = (le‘𝐾)
182, 17, 9latmle2 18424 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌)(le‘𝐾)𝑌)
1916, 4, 6, 18syl3an 1160 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝑋 𝑌)(le‘𝐾)𝑌)
2019adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌) ∈ 𝑁) → (𝑋 𝑌)(le‘𝐾)𝑌)
21 2lplnmj.n . . . . 5 𝑁 = (LLines‘𝐾)
2217, 10, 21, 3llncvrlpln2 39551 . . . 4 (((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ 𝑁𝑌𝑃) ∧ (𝑋 𝑌)(le‘𝐾)𝑌) → (𝑋 𝑌)( ⋖ ‘𝐾)𝑌)
2313, 14, 15, 20, 22syl31anc 1375 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌) ∈ 𝑁) → (𝑋 𝑌)( ⋖ ‘𝐾)𝑌)
24 simpl3 1194 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌)( ⋖ ‘𝐾)𝑌) → 𝑌𝑃)
252, 9latmcl 18399 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌) ∈ (Base‘𝐾))
2616, 4, 6, 25syl3an 1160 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝑋 𝑌) ∈ (Base‘𝐾))
271, 26, 73jca 1128 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)))
282, 10, 21, 3llncvrlpln 39552 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) ∧ (𝑋 𝑌)( ⋖ ‘𝐾)𝑌) → ((𝑋 𝑌) ∈ 𝑁𝑌𝑃))
2927, 28sylan 580 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌)( ⋖ ‘𝐾)𝑌) → ((𝑋 𝑌) ∈ 𝑁𝑌𝑃))
3024, 29mpbird 257 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌)( ⋖ ‘𝐾)𝑌) → (𝑋 𝑌) ∈ 𝑁)
3123, 30impbida 800 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → ((𝑋 𝑌) ∈ 𝑁 ↔ (𝑋 𝑌)( ⋖ ‘𝐾)𝑌))
32 simpl1 1192 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌) ∈ 𝑉) → 𝐾 ∈ HL)
33 simpl2 1193 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌) ∈ 𝑉) → 𝑋𝑃)
34 simpr 484 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌) ∈ 𝑉) → (𝑋 𝑌) ∈ 𝑉)
352, 17, 8latlej1 18407 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → 𝑋(le‘𝐾)(𝑋 𝑌))
3616, 4, 6, 35syl3an 1160 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → 𝑋(le‘𝐾)(𝑋 𝑌))
3736adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌) ∈ 𝑉) → 𝑋(le‘𝐾)(𝑋 𝑌))
38 2lplnmj.v . . . . 5 𝑉 = (LVols‘𝐾)
3917, 10, 3, 38lplncvrlvol2 39609 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃 ∧ (𝑋 𝑌) ∈ 𝑉) ∧ 𝑋(le‘𝐾)(𝑋 𝑌)) → 𝑋( ⋖ ‘𝐾)(𝑋 𝑌))
4032, 33, 34, 37, 39syl31anc 1375 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌) ∈ 𝑉) → 𝑋( ⋖ ‘𝐾)(𝑋 𝑌))
41 simpl2 1193 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ 𝑋( ⋖ ‘𝐾)(𝑋 𝑌)) → 𝑋𝑃)
422, 8latjcl 18398 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌) ∈ (Base‘𝐾))
4316, 4, 6, 42syl3an 1160 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝑋 𝑌) ∈ (Base‘𝐾))
441, 5, 433jca 1128 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾) ∧ (𝑋 𝑌) ∈ (Base‘𝐾)))
452, 10, 3, 38lplncvrlvol 39610 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾) ∧ (𝑋 𝑌) ∈ (Base‘𝐾)) ∧ 𝑋( ⋖ ‘𝐾)(𝑋 𝑌)) → (𝑋𝑃 ↔ (𝑋 𝑌) ∈ 𝑉))
4644, 45sylan 580 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ 𝑋( ⋖ ‘𝐾)(𝑋 𝑌)) → (𝑋𝑃 ↔ (𝑋 𝑌) ∈ 𝑉))
4741, 46mpbid 232 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ 𝑋( ⋖ ‘𝐾)(𝑋 𝑌)) → (𝑋 𝑌) ∈ 𝑉)
4840, 47impbida 800 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → ((𝑋 𝑌) ∈ 𝑉𝑋( ⋖ ‘𝐾)(𝑋 𝑌)))
4912, 31, 483bitr4d 311 1 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → ((𝑋 𝑌) ∈ 𝑁 ↔ (𝑋 𝑌) ∈ 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  joincjn 18272  meetcmee 18273  Latclat 18390  ccvr 39255  HLchlt 39343  LLinesclln 39485  LPlanesclpl 39486  LVolsclvol 39487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-llines 39492  df-lplanes 39493  df-lvols 39494
This theorem is referenced by:  dalem15  39672
  Copyright terms: Public domain W3C validator