Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2lplnmj Structured version   Visualization version   GIF version

Theorem 2lplnmj 38431
Description: The meet of two lattice planes is a lattice line iff their join is a lattice volume. (Contributed by NM, 13-Jul-2012.)
Hypotheses
Ref Expression
2lplnmj.j = (join‘𝐾)
2lplnmj.m = (meet‘𝐾)
2lplnmj.n 𝑁 = (LLines‘𝐾)
2lplnmj.p 𝑃 = (LPlanes‘𝐾)
2lplnmj.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
2lplnmj ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → ((𝑋 𝑌) ∈ 𝑁 ↔ (𝑋 𝑌) ∈ 𝑉))

Proof of Theorem 2lplnmj
StepHypRef Expression
1 simp1 1137 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → 𝐾 ∈ HL)
2 eqid 2733 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
3 2lplnmj.p . . . . 5 𝑃 = (LPlanes‘𝐾)
42, 3lplnbase 38343 . . . 4 (𝑋𝑃𝑋 ∈ (Base‘𝐾))
543ad2ant2 1135 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → 𝑋 ∈ (Base‘𝐾))
62, 3lplnbase 38343 . . . 4 (𝑌𝑃𝑌 ∈ (Base‘𝐾))
763ad2ant3 1136 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → 𝑌 ∈ (Base‘𝐾))
8 2lplnmj.j . . . 4 = (join‘𝐾)
9 2lplnmj.m . . . 4 = (meet‘𝐾)
10 eqid 2733 . . . 4 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
112, 8, 9, 10cvrexch 38229 . . 3 ((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → ((𝑋 𝑌)( ⋖ ‘𝐾)𝑌𝑋( ⋖ ‘𝐾)(𝑋 𝑌)))
121, 5, 7, 11syl3anc 1372 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → ((𝑋 𝑌)( ⋖ ‘𝐾)𝑌𝑋( ⋖ ‘𝐾)(𝑋 𝑌)))
13 simpl1 1192 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌) ∈ 𝑁) → 𝐾 ∈ HL)
14 simpr 486 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌) ∈ 𝑁) → (𝑋 𝑌) ∈ 𝑁)
15 simpl3 1194 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌) ∈ 𝑁) → 𝑌𝑃)
16 hllat 38171 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
17 eqid 2733 . . . . . . 7 (le‘𝐾) = (le‘𝐾)
182, 17, 9latmle2 18414 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌)(le‘𝐾)𝑌)
1916, 4, 6, 18syl3an 1161 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝑋 𝑌)(le‘𝐾)𝑌)
2019adantr 482 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌) ∈ 𝑁) → (𝑋 𝑌)(le‘𝐾)𝑌)
21 2lplnmj.n . . . . 5 𝑁 = (LLines‘𝐾)
2217, 10, 21, 3llncvrlpln2 38366 . . . 4 (((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ 𝑁𝑌𝑃) ∧ (𝑋 𝑌)(le‘𝐾)𝑌) → (𝑋 𝑌)( ⋖ ‘𝐾)𝑌)
2313, 14, 15, 20, 22syl31anc 1374 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌) ∈ 𝑁) → (𝑋 𝑌)( ⋖ ‘𝐾)𝑌)
24 simpl3 1194 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌)( ⋖ ‘𝐾)𝑌) → 𝑌𝑃)
252, 9latmcl 18389 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌) ∈ (Base‘𝐾))
2616, 4, 6, 25syl3an 1161 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝑋 𝑌) ∈ (Base‘𝐾))
271, 26, 73jca 1129 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)))
282, 10, 21, 3llncvrlpln 38367 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) ∧ (𝑋 𝑌)( ⋖ ‘𝐾)𝑌) → ((𝑋 𝑌) ∈ 𝑁𝑌𝑃))
2927, 28sylan 581 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌)( ⋖ ‘𝐾)𝑌) → ((𝑋 𝑌) ∈ 𝑁𝑌𝑃))
3024, 29mpbird 257 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌)( ⋖ ‘𝐾)𝑌) → (𝑋 𝑌) ∈ 𝑁)
3123, 30impbida 800 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → ((𝑋 𝑌) ∈ 𝑁 ↔ (𝑋 𝑌)( ⋖ ‘𝐾)𝑌))
32 simpl1 1192 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌) ∈ 𝑉) → 𝐾 ∈ HL)
33 simpl2 1193 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌) ∈ 𝑉) → 𝑋𝑃)
34 simpr 486 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌) ∈ 𝑉) → (𝑋 𝑌) ∈ 𝑉)
352, 17, 8latlej1 18397 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → 𝑋(le‘𝐾)(𝑋 𝑌))
3616, 4, 6, 35syl3an 1161 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → 𝑋(le‘𝐾)(𝑋 𝑌))
3736adantr 482 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌) ∈ 𝑉) → 𝑋(le‘𝐾)(𝑋 𝑌))
38 2lplnmj.v . . . . 5 𝑉 = (LVols‘𝐾)
3917, 10, 3, 38lplncvrlvol2 38424 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃 ∧ (𝑋 𝑌) ∈ 𝑉) ∧ 𝑋(le‘𝐾)(𝑋 𝑌)) → 𝑋( ⋖ ‘𝐾)(𝑋 𝑌))
4032, 33, 34, 37, 39syl31anc 1374 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌) ∈ 𝑉) → 𝑋( ⋖ ‘𝐾)(𝑋 𝑌))
41 simpl2 1193 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ 𝑋( ⋖ ‘𝐾)(𝑋 𝑌)) → 𝑋𝑃)
422, 8latjcl 18388 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌) ∈ (Base‘𝐾))
4316, 4, 6, 42syl3an 1161 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝑋 𝑌) ∈ (Base‘𝐾))
441, 5, 433jca 1129 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾) ∧ (𝑋 𝑌) ∈ (Base‘𝐾)))
452, 10, 3, 38lplncvrlvol 38425 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾) ∧ (𝑋 𝑌) ∈ (Base‘𝐾)) ∧ 𝑋( ⋖ ‘𝐾)(𝑋 𝑌)) → (𝑋𝑃 ↔ (𝑋 𝑌) ∈ 𝑉))
4644, 45sylan 581 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ 𝑋( ⋖ ‘𝐾)(𝑋 𝑌)) → (𝑋𝑃 ↔ (𝑋 𝑌) ∈ 𝑉))
4741, 46mpbid 231 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ 𝑋( ⋖ ‘𝐾)(𝑋 𝑌)) → (𝑋 𝑌) ∈ 𝑉)
4840, 47impbida 800 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → ((𝑋 𝑌) ∈ 𝑉𝑋( ⋖ ‘𝐾)(𝑋 𝑌)))
4912, 31, 483bitr4d 311 1 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → ((𝑋 𝑌) ∈ 𝑁 ↔ (𝑋 𝑌) ∈ 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107   class class class wbr 5147  cfv 6540  (class class class)co 7404  Basecbs 17140  lecple 17200  joincjn 18260  meetcmee 18261  Latclat 18380  ccvr 38070  HLchlt 38158  LLinesclln 38300  LPlanesclpl 38301  LVolsclvol 38302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-lat 18381  df-clat 18448  df-oposet 37984  df-ol 37986  df-oml 37987  df-covers 38074  df-ats 38075  df-atl 38106  df-cvlat 38130  df-hlat 38159  df-llines 38307  df-lplanes 38308  df-lvols 38309
This theorem is referenced by:  dalem15  38487
  Copyright terms: Public domain W3C validator