Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2lplnmj Structured version   Visualization version   GIF version

Theorem 2lplnmj 37563
Description: The meet of two lattice planes is a lattice line iff their join is a lattice volume. (Contributed by NM, 13-Jul-2012.)
Hypotheses
Ref Expression
2lplnmj.j = (join‘𝐾)
2lplnmj.m = (meet‘𝐾)
2lplnmj.n 𝑁 = (LLines‘𝐾)
2lplnmj.p 𝑃 = (LPlanes‘𝐾)
2lplnmj.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
2lplnmj ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → ((𝑋 𝑌) ∈ 𝑁 ↔ (𝑋 𝑌) ∈ 𝑉))

Proof of Theorem 2lplnmj
StepHypRef Expression
1 simp1 1134 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → 𝐾 ∈ HL)
2 eqid 2738 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
3 2lplnmj.p . . . . 5 𝑃 = (LPlanes‘𝐾)
42, 3lplnbase 37475 . . . 4 (𝑋𝑃𝑋 ∈ (Base‘𝐾))
543ad2ant2 1132 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → 𝑋 ∈ (Base‘𝐾))
62, 3lplnbase 37475 . . . 4 (𝑌𝑃𝑌 ∈ (Base‘𝐾))
763ad2ant3 1133 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → 𝑌 ∈ (Base‘𝐾))
8 2lplnmj.j . . . 4 = (join‘𝐾)
9 2lplnmj.m . . . 4 = (meet‘𝐾)
10 eqid 2738 . . . 4 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
112, 8, 9, 10cvrexch 37361 . . 3 ((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → ((𝑋 𝑌)( ⋖ ‘𝐾)𝑌𝑋( ⋖ ‘𝐾)(𝑋 𝑌)))
121, 5, 7, 11syl3anc 1369 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → ((𝑋 𝑌)( ⋖ ‘𝐾)𝑌𝑋( ⋖ ‘𝐾)(𝑋 𝑌)))
13 simpl1 1189 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌) ∈ 𝑁) → 𝐾 ∈ HL)
14 simpr 484 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌) ∈ 𝑁) → (𝑋 𝑌) ∈ 𝑁)
15 simpl3 1191 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌) ∈ 𝑁) → 𝑌𝑃)
16 hllat 37304 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
17 eqid 2738 . . . . . . 7 (le‘𝐾) = (le‘𝐾)
182, 17, 9latmle2 18098 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌)(le‘𝐾)𝑌)
1916, 4, 6, 18syl3an 1158 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝑋 𝑌)(le‘𝐾)𝑌)
2019adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌) ∈ 𝑁) → (𝑋 𝑌)(le‘𝐾)𝑌)
21 2lplnmj.n . . . . 5 𝑁 = (LLines‘𝐾)
2217, 10, 21, 3llncvrlpln2 37498 . . . 4 (((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ 𝑁𝑌𝑃) ∧ (𝑋 𝑌)(le‘𝐾)𝑌) → (𝑋 𝑌)( ⋖ ‘𝐾)𝑌)
2313, 14, 15, 20, 22syl31anc 1371 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌) ∈ 𝑁) → (𝑋 𝑌)( ⋖ ‘𝐾)𝑌)
24 simpl3 1191 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌)( ⋖ ‘𝐾)𝑌) → 𝑌𝑃)
252, 9latmcl 18073 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌) ∈ (Base‘𝐾))
2616, 4, 6, 25syl3an 1158 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝑋 𝑌) ∈ (Base‘𝐾))
271, 26, 73jca 1126 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)))
282, 10, 21, 3llncvrlpln 37499 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) ∧ (𝑋 𝑌)( ⋖ ‘𝐾)𝑌) → ((𝑋 𝑌) ∈ 𝑁𝑌𝑃))
2927, 28sylan 579 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌)( ⋖ ‘𝐾)𝑌) → ((𝑋 𝑌) ∈ 𝑁𝑌𝑃))
3024, 29mpbird 256 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌)( ⋖ ‘𝐾)𝑌) → (𝑋 𝑌) ∈ 𝑁)
3123, 30impbida 797 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → ((𝑋 𝑌) ∈ 𝑁 ↔ (𝑋 𝑌)( ⋖ ‘𝐾)𝑌))
32 simpl1 1189 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌) ∈ 𝑉) → 𝐾 ∈ HL)
33 simpl2 1190 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌) ∈ 𝑉) → 𝑋𝑃)
34 simpr 484 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌) ∈ 𝑉) → (𝑋 𝑌) ∈ 𝑉)
352, 17, 8latlej1 18081 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → 𝑋(le‘𝐾)(𝑋 𝑌))
3616, 4, 6, 35syl3an 1158 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → 𝑋(le‘𝐾)(𝑋 𝑌))
3736adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌) ∈ 𝑉) → 𝑋(le‘𝐾)(𝑋 𝑌))
38 2lplnmj.v . . . . 5 𝑉 = (LVols‘𝐾)
3917, 10, 3, 38lplncvrlvol2 37556 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃 ∧ (𝑋 𝑌) ∈ 𝑉) ∧ 𝑋(le‘𝐾)(𝑋 𝑌)) → 𝑋( ⋖ ‘𝐾)(𝑋 𝑌))
4032, 33, 34, 37, 39syl31anc 1371 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ (𝑋 𝑌) ∈ 𝑉) → 𝑋( ⋖ ‘𝐾)(𝑋 𝑌))
41 simpl2 1190 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ 𝑋( ⋖ ‘𝐾)(𝑋 𝑌)) → 𝑋𝑃)
422, 8latjcl 18072 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌) ∈ (Base‘𝐾))
4316, 4, 6, 42syl3an 1158 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝑋 𝑌) ∈ (Base‘𝐾))
441, 5, 433jca 1126 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾) ∧ (𝑋 𝑌) ∈ (Base‘𝐾)))
452, 10, 3, 38lplncvrlvol 37557 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾) ∧ (𝑋 𝑌) ∈ (Base‘𝐾)) ∧ 𝑋( ⋖ ‘𝐾)(𝑋 𝑌)) → (𝑋𝑃 ↔ (𝑋 𝑌) ∈ 𝑉))
4644, 45sylan 579 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ 𝑋( ⋖ ‘𝐾)(𝑋 𝑌)) → (𝑋𝑃 ↔ (𝑋 𝑌) ∈ 𝑉))
4741, 46mpbid 231 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ 𝑋( ⋖ ‘𝐾)(𝑋 𝑌)) → (𝑋 𝑌) ∈ 𝑉)
4840, 47impbida 797 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → ((𝑋 𝑌) ∈ 𝑉𝑋( ⋖ ‘𝐾)(𝑋 𝑌)))
4912, 31, 483bitr4d 310 1 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → ((𝑋 𝑌) ∈ 𝑁 ↔ (𝑋 𝑌) ∈ 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  lecple 16895  joincjn 17944  meetcmee 17945  Latclat 18064  ccvr 37203  HLchlt 37291  LLinesclln 37432  LPlanesclpl 37433  LVolsclvol 37434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-llines 37439  df-lplanes 37440  df-lvols 37441
This theorem is referenced by:  dalem15  37619
  Copyright terms: Public domain W3C validator