Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalemqrprot Structured version   Visualization version   GIF version

Theorem dalemqrprot 36916
Description: Lemma for dath 37004. Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012.)
Hypotheses
Ref Expression
dalema.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalemb.j = (join‘𝐾)
dalemb.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
dalemqrprot (𝜑 → ((𝑄 𝑅) 𝑃) = ((𝑃 𝑄) 𝑅))

Proof of Theorem dalemqrprot
StepHypRef Expression
1 dalema.ph . . 3 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
21dalemkehl 36891 . 2 (𝜑𝐾 ∈ HL)
31dalemqea 36895 . 2 (𝜑𝑄𝐴)
41dalemrea 36896 . 2 (𝜑𝑅𝐴)
51dalempea 36894 . 2 (𝜑𝑃𝐴)
6 dalemb.j . . 3 = (join‘𝐾)
7 dalemb.a . . 3 𝐴 = (Atoms‘𝐾)
86, 7hlatjrot 36641 . 2 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑃𝐴)) → ((𝑄 𝑅) 𝑃) = ((𝑃 𝑄) 𝑅))
92, 3, 4, 5, 8syl13anc 1369 1 (𝜑 → ((𝑄 𝑅) 𝑃) = ((𝑃 𝑄) 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2115   class class class wbr 5053  cfv 6345  (class class class)co 7151  Basecbs 16485  joincjn 17556  Atomscatm 36531  HLchlt 36618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7457
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-iun 4907  df-br 5054  df-opab 5116  df-mpt 5134  df-id 5448  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-iota 6304  df-fun 6347  df-fn 6348  df-f 6349  df-f1 6350  df-fo 6351  df-f1o 6352  df-fv 6353  df-riota 7109  df-ov 7154  df-oprab 7155  df-proset 17540  df-poset 17558  df-lub 17586  df-glb 17587  df-join 17588  df-meet 17589  df-lat 17658  df-ats 36535  df-atl 36566  df-cvlat 36590  df-hlat 36619
This theorem is referenced by:  dalemrot  36925  dalemrotyz  36926  dalem6  36936  dalem7  36937  dalem11  36942  dalem12  36943  dalemrotps  36959  dalem30  36970  dalem35  36975  dalem58  36998  dalem59  36999
  Copyright terms: Public domain W3C validator