Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem2 Structured version   Visualization version   GIF version

Theorem dalem2 39650
Description: Lemma for dath 39725. Show the lines 𝑃𝑄 and 𝑆𝑇 form a plane. (Contributed by NM, 11-Aug-2012.)
Hypotheses
Ref Expression
dalema.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalemc.l = (le‘𝐾)
dalemc.j = (join‘𝐾)
dalemc.a 𝐴 = (Atoms‘𝐾)
dalem1.o 𝑂 = (LPlanes‘𝐾)
dalem1.y 𝑌 = ((𝑃 𝑄) 𝑅)
Assertion
Ref Expression
dalem2 (𝜑 → ((𝑃 𝑄) (𝑆 𝑇)) ∈ 𝑂)

Proof of Theorem dalem2
StepHypRef Expression
1 dalema.ph . . . 4 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
21dalemkehl 39612 . . 3 (𝜑𝐾 ∈ HL)
31dalempea 39615 . . 3 (𝜑𝑃𝐴)
41dalemqea 39616 . . 3 (𝜑𝑄𝐴)
51dalemsea 39618 . . 3 (𝜑𝑆𝐴)
61dalemtea 39619 . . 3 (𝜑𝑇𝐴)
7 dalemc.j . . . 4 = (join‘𝐾)
8 dalemc.a . . . 4 𝐴 = (Atoms‘𝐾)
97, 8hlatj4 39362 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) = ((𝑃 𝑆) (𝑄 𝑇)))
102, 3, 4, 5, 6, 9syl122anc 1381 . 2 (𝜑 → ((𝑃 𝑄) (𝑆 𝑇)) = ((𝑃 𝑆) (𝑄 𝑇)))
11 dalemc.l . . . . 5 = (le‘𝐾)
12 dalem1.o . . . . 5 𝑂 = (LPlanes‘𝐾)
13 dalem1.y . . . . 5 𝑌 = ((𝑃 𝑄) 𝑅)
141, 11, 7, 8, 12, 13dalempjsen 39642 . . . 4 (𝜑 → (𝑃 𝑆) ∈ (LLines‘𝐾))
151, 11, 7, 8, 12, 13dalemqnet 39641 . . . . 5 (𝜑𝑄𝑇)
16 eqid 2730 . . . . . 6 (LLines‘𝐾) = (LLines‘𝐾)
177, 8, 16llni2 39501 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴) ∧ 𝑄𝑇) → (𝑄 𝑇) ∈ (LLines‘𝐾))
182, 4, 6, 15, 17syl31anc 1375 . . . 4 (𝜑 → (𝑄 𝑇) ∈ (LLines‘𝐾))
191, 11, 7, 8, 12, 13dalem1 39648 . . . 4 (𝜑 → (𝑃 𝑆) ≠ (𝑄 𝑇))
201, 11, 7, 8, 12, 13dalemcea 39649 . . . . 5 (𝜑𝐶𝐴)
211dalemclpjs 39623 . . . . 5 (𝜑𝐶 (𝑃 𝑆))
221dalemclqjt 39624 . . . . 5 (𝜑𝐶 (𝑄 𝑇))
23 eqid 2730 . . . . . 6 (meet‘𝐾) = (meet‘𝐾)
24 eqid 2730 . . . . . 6 (0.‘𝐾) = (0.‘𝐾)
2511, 23, 24, 8, 162llnm4 39559 . . . . 5 ((𝐾 ∈ HL ∧ (𝐶𝐴 ∧ (𝑃 𝑆) ∈ (LLines‘𝐾) ∧ (𝑄 𝑇) ∈ (LLines‘𝐾)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇))) → ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ≠ (0.‘𝐾))
262, 20, 14, 18, 21, 22, 25syl132anc 1390 . . . 4 (𝜑 → ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ≠ (0.‘𝐾))
2723, 24, 8, 162llnmat 39513 . . . 4 (((𝐾 ∈ HL ∧ (𝑃 𝑆) ∈ (LLines‘𝐾) ∧ (𝑄 𝑇) ∈ (LLines‘𝐾)) ∧ ((𝑃 𝑆) ≠ (𝑄 𝑇) ∧ ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ≠ (0.‘𝐾))) → ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ∈ 𝐴)
282, 14, 18, 19, 26, 27syl32anc 1380 . . 3 (𝜑 → ((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ∈ 𝐴)
297, 23, 8, 16, 122llnmj 39549 . . . 4 ((𝐾 ∈ HL ∧ (𝑃 𝑆) ∈ (LLines‘𝐾) ∧ (𝑄 𝑇) ∈ (LLines‘𝐾)) → (((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ∈ 𝐴 ↔ ((𝑃 𝑆) (𝑄 𝑇)) ∈ 𝑂))
302, 14, 18, 29syl3anc 1373 . . 3 (𝜑 → (((𝑃 𝑆)(meet‘𝐾)(𝑄 𝑇)) ∈ 𝐴 ↔ ((𝑃 𝑆) (𝑄 𝑇)) ∈ 𝑂))
3128, 30mpbid 232 . 2 (𝜑 → ((𝑃 𝑆) (𝑄 𝑇)) ∈ 𝑂)
3210, 31eqeltrd 2829 1 (𝜑 → ((𝑃 𝑄) (𝑆 𝑇)) ∈ 𝑂)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5109  cfv 6513  (class class class)co 7389  Basecbs 17185  lecple 17233  joincjn 18278  meetcmee 18279  0.cp0 18388  Atomscatm 39251  HLchlt 39338  LLinesclln 39480  LPlanesclpl 39481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-proset 18261  df-poset 18280  df-plt 18295  df-lub 18311  df-glb 18312  df-join 18313  df-meet 18314  df-p0 18390  df-lat 18397  df-clat 18464  df-oposet 39164  df-ol 39166  df-oml 39167  df-covers 39254  df-ats 39255  df-atl 39286  df-cvlat 39310  df-hlat 39339  df-llines 39487  df-lplanes 39488
This theorem is referenced by:  dalemdea  39651
  Copyright terms: Public domain W3C validator