![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dalem2 | Structured version Visualization version GIF version |
Description: Lemma for dath 39101. Show the lines 𝑃𝑄 and 𝑆𝑇 form a plane. (Contributed by NM, 11-Aug-2012.) |
Ref | Expression |
---|---|
dalema.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
dalemc.l | ⊢ ≤ = (le‘𝐾) |
dalemc.j | ⊢ ∨ = (join‘𝐾) |
dalemc.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dalem1.o | ⊢ 𝑂 = (LPlanes‘𝐾) |
dalem1.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
Ref | Expression |
---|---|
dalem2 | ⊢ (𝜑 → ((𝑃 ∨ 𝑄) ∨ (𝑆 ∨ 𝑇)) ∈ 𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalema.ph | . . . 4 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | |
2 | 1 | dalemkehl 38988 | . . 3 ⊢ (𝜑 → 𝐾 ∈ HL) |
3 | 1 | dalempea 38991 | . . 3 ⊢ (𝜑 → 𝑃 ∈ 𝐴) |
4 | 1 | dalemqea 38992 | . . 3 ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
5 | 1 | dalemsea 38994 | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝐴) |
6 | 1 | dalemtea 38995 | . . 3 ⊢ (𝜑 → 𝑇 ∈ 𝐴) |
7 | dalemc.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
8 | dalemc.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
9 | 7, 8 | hlatj4 38738 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ (𝑆 ∨ 𝑇)) = ((𝑃 ∨ 𝑆) ∨ (𝑄 ∨ 𝑇))) |
10 | 2, 3, 4, 5, 6, 9 | syl122anc 1376 | . 2 ⊢ (𝜑 → ((𝑃 ∨ 𝑄) ∨ (𝑆 ∨ 𝑇)) = ((𝑃 ∨ 𝑆) ∨ (𝑄 ∨ 𝑇))) |
11 | dalemc.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
12 | dalem1.o | . . . . 5 ⊢ 𝑂 = (LPlanes‘𝐾) | |
13 | dalem1.y | . . . . 5 ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) | |
14 | 1, 11, 7, 8, 12, 13 | dalempjsen 39018 | . . . 4 ⊢ (𝜑 → (𝑃 ∨ 𝑆) ∈ (LLines‘𝐾)) |
15 | 1, 11, 7, 8, 12, 13 | dalemqnet 39017 | . . . . 5 ⊢ (𝜑 → 𝑄 ≠ 𝑇) |
16 | eqid 2724 | . . . . . 6 ⊢ (LLines‘𝐾) = (LLines‘𝐾) | |
17 | 7, 8, 16 | llni2 38877 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ 𝑄 ≠ 𝑇) → (𝑄 ∨ 𝑇) ∈ (LLines‘𝐾)) |
18 | 2, 4, 6, 15, 17 | syl31anc 1370 | . . . 4 ⊢ (𝜑 → (𝑄 ∨ 𝑇) ∈ (LLines‘𝐾)) |
19 | 1, 11, 7, 8, 12, 13 | dalem1 39024 | . . . 4 ⊢ (𝜑 → (𝑃 ∨ 𝑆) ≠ (𝑄 ∨ 𝑇)) |
20 | 1, 11, 7, 8, 12, 13 | dalemcea 39025 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
21 | 1 | dalemclpjs 38999 | . . . . 5 ⊢ (𝜑 → 𝐶 ≤ (𝑃 ∨ 𝑆)) |
22 | 1 | dalemclqjt 39000 | . . . . 5 ⊢ (𝜑 → 𝐶 ≤ (𝑄 ∨ 𝑇)) |
23 | eqid 2724 | . . . . . 6 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
24 | eqid 2724 | . . . . . 6 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
25 | 11, 23, 24, 8, 16 | 2llnm4 38935 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝐶 ∈ 𝐴 ∧ (𝑃 ∨ 𝑆) ∈ (LLines‘𝐾) ∧ (𝑄 ∨ 𝑇) ∈ (LLines‘𝐾)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇))) → ((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇)) ≠ (0.‘𝐾)) |
26 | 2, 20, 14, 18, 21, 22, 25 | syl132anc 1385 | . . . 4 ⊢ (𝜑 → ((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇)) ≠ (0.‘𝐾)) |
27 | 23, 24, 8, 16 | 2llnmat 38889 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ (𝑃 ∨ 𝑆) ∈ (LLines‘𝐾) ∧ (𝑄 ∨ 𝑇) ∈ (LLines‘𝐾)) ∧ ((𝑃 ∨ 𝑆) ≠ (𝑄 ∨ 𝑇) ∧ ((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇)) ≠ (0.‘𝐾))) → ((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇)) ∈ 𝐴) |
28 | 2, 14, 18, 19, 26, 27 | syl32anc 1375 | . . 3 ⊢ (𝜑 → ((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇)) ∈ 𝐴) |
29 | 7, 23, 8, 16, 12 | 2llnmj 38925 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∨ 𝑆) ∈ (LLines‘𝐾) ∧ (𝑄 ∨ 𝑇) ∈ (LLines‘𝐾)) → (((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇)) ∈ 𝐴 ↔ ((𝑃 ∨ 𝑆) ∨ (𝑄 ∨ 𝑇)) ∈ 𝑂)) |
30 | 2, 14, 18, 29 | syl3anc 1368 | . . 3 ⊢ (𝜑 → (((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇)) ∈ 𝐴 ↔ ((𝑃 ∨ 𝑆) ∨ (𝑄 ∨ 𝑇)) ∈ 𝑂)) |
31 | 28, 30 | mpbid 231 | . 2 ⊢ (𝜑 → ((𝑃 ∨ 𝑆) ∨ (𝑄 ∨ 𝑇)) ∈ 𝑂) |
32 | 10, 31 | eqeltrd 2825 | 1 ⊢ (𝜑 → ((𝑃 ∨ 𝑄) ∨ (𝑆 ∨ 𝑇)) ∈ 𝑂) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 class class class wbr 5139 ‘cfv 6534 (class class class)co 7402 Basecbs 17145 lecple 17205 joincjn 18268 meetcmee 18269 0.cp0 18380 Atomscatm 38627 HLchlt 38714 LLinesclln 38856 LPlanesclpl 38857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-proset 18252 df-poset 18270 df-plt 18287 df-lub 18303 df-glb 18304 df-join 18305 df-meet 18306 df-p0 18382 df-lat 18389 df-clat 18456 df-oposet 38540 df-ol 38542 df-oml 38543 df-covers 38630 df-ats 38631 df-atl 38662 df-cvlat 38686 df-hlat 38715 df-llines 38863 df-lplanes 38864 |
This theorem is referenced by: dalemdea 39027 |
Copyright terms: Public domain | W3C validator |