Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dalem2 | Structured version Visualization version GIF version |
Description: Lemma for dath 37750. Show the lines 𝑃𝑄 and 𝑆𝑇 form a plane. (Contributed by NM, 11-Aug-2012.) |
Ref | Expression |
---|---|
dalema.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
dalemc.l | ⊢ ≤ = (le‘𝐾) |
dalemc.j | ⊢ ∨ = (join‘𝐾) |
dalemc.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dalem1.o | ⊢ 𝑂 = (LPlanes‘𝐾) |
dalem1.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
Ref | Expression |
---|---|
dalem2 | ⊢ (𝜑 → ((𝑃 ∨ 𝑄) ∨ (𝑆 ∨ 𝑇)) ∈ 𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalema.ph | . . . 4 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | |
2 | 1 | dalemkehl 37637 | . . 3 ⊢ (𝜑 → 𝐾 ∈ HL) |
3 | 1 | dalempea 37640 | . . 3 ⊢ (𝜑 → 𝑃 ∈ 𝐴) |
4 | 1 | dalemqea 37641 | . . 3 ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
5 | 1 | dalemsea 37643 | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝐴) |
6 | 1 | dalemtea 37644 | . . 3 ⊢ (𝜑 → 𝑇 ∈ 𝐴) |
7 | dalemc.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
8 | dalemc.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
9 | 7, 8 | hlatj4 37388 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ (𝑆 ∨ 𝑇)) = ((𝑃 ∨ 𝑆) ∨ (𝑄 ∨ 𝑇))) |
10 | 2, 3, 4, 5, 6, 9 | syl122anc 1378 | . 2 ⊢ (𝜑 → ((𝑃 ∨ 𝑄) ∨ (𝑆 ∨ 𝑇)) = ((𝑃 ∨ 𝑆) ∨ (𝑄 ∨ 𝑇))) |
11 | dalemc.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
12 | dalem1.o | . . . . 5 ⊢ 𝑂 = (LPlanes‘𝐾) | |
13 | dalem1.y | . . . . 5 ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) | |
14 | 1, 11, 7, 8, 12, 13 | dalempjsen 37667 | . . . 4 ⊢ (𝜑 → (𝑃 ∨ 𝑆) ∈ (LLines‘𝐾)) |
15 | 1, 11, 7, 8, 12, 13 | dalemqnet 37666 | . . . . 5 ⊢ (𝜑 → 𝑄 ≠ 𝑇) |
16 | eqid 2738 | . . . . . 6 ⊢ (LLines‘𝐾) = (LLines‘𝐾) | |
17 | 7, 8, 16 | llni2 37526 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ 𝑄 ≠ 𝑇) → (𝑄 ∨ 𝑇) ∈ (LLines‘𝐾)) |
18 | 2, 4, 6, 15, 17 | syl31anc 1372 | . . . 4 ⊢ (𝜑 → (𝑄 ∨ 𝑇) ∈ (LLines‘𝐾)) |
19 | 1, 11, 7, 8, 12, 13 | dalem1 37673 | . . . 4 ⊢ (𝜑 → (𝑃 ∨ 𝑆) ≠ (𝑄 ∨ 𝑇)) |
20 | 1, 11, 7, 8, 12, 13 | dalemcea 37674 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
21 | 1 | dalemclpjs 37648 | . . . . 5 ⊢ (𝜑 → 𝐶 ≤ (𝑃 ∨ 𝑆)) |
22 | 1 | dalemclqjt 37649 | . . . . 5 ⊢ (𝜑 → 𝐶 ≤ (𝑄 ∨ 𝑇)) |
23 | eqid 2738 | . . . . . 6 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
24 | eqid 2738 | . . . . . 6 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
25 | 11, 23, 24, 8, 16 | 2llnm4 37584 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝐶 ∈ 𝐴 ∧ (𝑃 ∨ 𝑆) ∈ (LLines‘𝐾) ∧ (𝑄 ∨ 𝑇) ∈ (LLines‘𝐾)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇))) → ((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇)) ≠ (0.‘𝐾)) |
26 | 2, 20, 14, 18, 21, 22, 25 | syl132anc 1387 | . . . 4 ⊢ (𝜑 → ((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇)) ≠ (0.‘𝐾)) |
27 | 23, 24, 8, 16 | 2llnmat 37538 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ (𝑃 ∨ 𝑆) ∈ (LLines‘𝐾) ∧ (𝑄 ∨ 𝑇) ∈ (LLines‘𝐾)) ∧ ((𝑃 ∨ 𝑆) ≠ (𝑄 ∨ 𝑇) ∧ ((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇)) ≠ (0.‘𝐾))) → ((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇)) ∈ 𝐴) |
28 | 2, 14, 18, 19, 26, 27 | syl32anc 1377 | . . 3 ⊢ (𝜑 → ((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇)) ∈ 𝐴) |
29 | 7, 23, 8, 16, 12 | 2llnmj 37574 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∨ 𝑆) ∈ (LLines‘𝐾) ∧ (𝑄 ∨ 𝑇) ∈ (LLines‘𝐾)) → (((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇)) ∈ 𝐴 ↔ ((𝑃 ∨ 𝑆) ∨ (𝑄 ∨ 𝑇)) ∈ 𝑂)) |
30 | 2, 14, 18, 29 | syl3anc 1370 | . . 3 ⊢ (𝜑 → (((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇)) ∈ 𝐴 ↔ ((𝑃 ∨ 𝑆) ∨ (𝑄 ∨ 𝑇)) ∈ 𝑂)) |
31 | 28, 30 | mpbid 231 | . 2 ⊢ (𝜑 → ((𝑃 ∨ 𝑆) ∨ (𝑄 ∨ 𝑇)) ∈ 𝑂) |
32 | 10, 31 | eqeltrd 2839 | 1 ⊢ (𝜑 → ((𝑃 ∨ 𝑄) ∨ (𝑆 ∨ 𝑇)) ∈ 𝑂) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 lecple 16969 joincjn 18029 meetcmee 18030 0.cp0 18141 Atomscatm 37277 HLchlt 37364 LLinesclln 37505 LPlanesclpl 37506 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-proset 18013 df-poset 18031 df-plt 18048 df-lub 18064 df-glb 18065 df-join 18066 df-meet 18067 df-p0 18143 df-lat 18150 df-clat 18217 df-oposet 37190 df-ol 37192 df-oml 37193 df-covers 37280 df-ats 37281 df-atl 37312 df-cvlat 37336 df-hlat 37365 df-llines 37512 df-lplanes 37513 |
This theorem is referenced by: dalemdea 37676 |
Copyright terms: Public domain | W3C validator |