| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dalem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for dath 39703. Show the lines 𝑃𝑄 and 𝑆𝑇 form a plane. (Contributed by NM, 11-Aug-2012.) |
| Ref | Expression |
|---|---|
| dalema.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
| dalemc.l | ⊢ ≤ = (le‘𝐾) |
| dalemc.j | ⊢ ∨ = (join‘𝐾) |
| dalemc.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| dalem1.o | ⊢ 𝑂 = (LPlanes‘𝐾) |
| dalem1.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
| Ref | Expression |
|---|---|
| dalem2 | ⊢ (𝜑 → ((𝑃 ∨ 𝑄) ∨ (𝑆 ∨ 𝑇)) ∈ 𝑂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dalema.ph | . . . 4 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | |
| 2 | 1 | dalemkehl 39590 | . . 3 ⊢ (𝜑 → 𝐾 ∈ HL) |
| 3 | 1 | dalempea 39593 | . . 3 ⊢ (𝜑 → 𝑃 ∈ 𝐴) |
| 4 | 1 | dalemqea 39594 | . . 3 ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
| 5 | 1 | dalemsea 39596 | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝐴) |
| 6 | 1 | dalemtea 39597 | . . 3 ⊢ (𝜑 → 𝑇 ∈ 𝐴) |
| 7 | dalemc.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 8 | dalemc.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 9 | 7, 8 | hlatj4 39340 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ (𝑆 ∨ 𝑇)) = ((𝑃 ∨ 𝑆) ∨ (𝑄 ∨ 𝑇))) |
| 10 | 2, 3, 4, 5, 6, 9 | syl122anc 1381 | . 2 ⊢ (𝜑 → ((𝑃 ∨ 𝑄) ∨ (𝑆 ∨ 𝑇)) = ((𝑃 ∨ 𝑆) ∨ (𝑄 ∨ 𝑇))) |
| 11 | dalemc.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 12 | dalem1.o | . . . . 5 ⊢ 𝑂 = (LPlanes‘𝐾) | |
| 13 | dalem1.y | . . . . 5 ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) | |
| 14 | 1, 11, 7, 8, 12, 13 | dalempjsen 39620 | . . . 4 ⊢ (𝜑 → (𝑃 ∨ 𝑆) ∈ (LLines‘𝐾)) |
| 15 | 1, 11, 7, 8, 12, 13 | dalemqnet 39619 | . . . . 5 ⊢ (𝜑 → 𝑄 ≠ 𝑇) |
| 16 | eqid 2729 | . . . . . 6 ⊢ (LLines‘𝐾) = (LLines‘𝐾) | |
| 17 | 7, 8, 16 | llni2 39479 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ 𝑄 ≠ 𝑇) → (𝑄 ∨ 𝑇) ∈ (LLines‘𝐾)) |
| 18 | 2, 4, 6, 15, 17 | syl31anc 1375 | . . . 4 ⊢ (𝜑 → (𝑄 ∨ 𝑇) ∈ (LLines‘𝐾)) |
| 19 | 1, 11, 7, 8, 12, 13 | dalem1 39626 | . . . 4 ⊢ (𝜑 → (𝑃 ∨ 𝑆) ≠ (𝑄 ∨ 𝑇)) |
| 20 | 1, 11, 7, 8, 12, 13 | dalemcea 39627 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
| 21 | 1 | dalemclpjs 39601 | . . . . 5 ⊢ (𝜑 → 𝐶 ≤ (𝑃 ∨ 𝑆)) |
| 22 | 1 | dalemclqjt 39602 | . . . . 5 ⊢ (𝜑 → 𝐶 ≤ (𝑄 ∨ 𝑇)) |
| 23 | eqid 2729 | . . . . . 6 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 24 | eqid 2729 | . . . . . 6 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
| 25 | 11, 23, 24, 8, 16 | 2llnm4 39537 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝐶 ∈ 𝐴 ∧ (𝑃 ∨ 𝑆) ∈ (LLines‘𝐾) ∧ (𝑄 ∨ 𝑇) ∈ (LLines‘𝐾)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇))) → ((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇)) ≠ (0.‘𝐾)) |
| 26 | 2, 20, 14, 18, 21, 22, 25 | syl132anc 1390 | . . . 4 ⊢ (𝜑 → ((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇)) ≠ (0.‘𝐾)) |
| 27 | 23, 24, 8, 16 | 2llnmat 39491 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ (𝑃 ∨ 𝑆) ∈ (LLines‘𝐾) ∧ (𝑄 ∨ 𝑇) ∈ (LLines‘𝐾)) ∧ ((𝑃 ∨ 𝑆) ≠ (𝑄 ∨ 𝑇) ∧ ((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇)) ≠ (0.‘𝐾))) → ((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇)) ∈ 𝐴) |
| 28 | 2, 14, 18, 19, 26, 27 | syl32anc 1380 | . . 3 ⊢ (𝜑 → ((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇)) ∈ 𝐴) |
| 29 | 7, 23, 8, 16, 12 | 2llnmj 39527 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∨ 𝑆) ∈ (LLines‘𝐾) ∧ (𝑄 ∨ 𝑇) ∈ (LLines‘𝐾)) → (((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇)) ∈ 𝐴 ↔ ((𝑃 ∨ 𝑆) ∨ (𝑄 ∨ 𝑇)) ∈ 𝑂)) |
| 30 | 2, 14, 18, 29 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇)) ∈ 𝐴 ↔ ((𝑃 ∨ 𝑆) ∨ (𝑄 ∨ 𝑇)) ∈ 𝑂)) |
| 31 | 28, 30 | mpbid 232 | . 2 ⊢ (𝜑 → ((𝑃 ∨ 𝑆) ∨ (𝑄 ∨ 𝑇)) ∈ 𝑂) |
| 32 | 10, 31 | eqeltrd 2828 | 1 ⊢ (𝜑 → ((𝑃 ∨ 𝑄) ∨ (𝑆 ∨ 𝑇)) ∈ 𝑂) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 lecple 17203 joincjn 18248 meetcmee 18249 0.cp0 18358 Atomscatm 39229 HLchlt 39316 LLinesclln 39458 LPlanesclpl 39459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-proset 18231 df-poset 18250 df-plt 18265 df-lub 18281 df-glb 18282 df-join 18283 df-meet 18284 df-p0 18360 df-lat 18367 df-clat 18434 df-oposet 39142 df-ol 39144 df-oml 39145 df-covers 39232 df-ats 39233 df-atl 39264 df-cvlat 39288 df-hlat 39317 df-llines 39465 df-lplanes 39466 |
| This theorem is referenced by: dalemdea 39629 |
| Copyright terms: Public domain | W3C validator |