|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dalem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for dath 39739. Show the lines 𝑃𝑄 and 𝑆𝑇 form a plane. (Contributed by NM, 11-Aug-2012.) | 
| Ref | Expression | 
|---|---|
| dalema.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | 
| dalemc.l | ⊢ ≤ = (le‘𝐾) | 
| dalemc.j | ⊢ ∨ = (join‘𝐾) | 
| dalemc.a | ⊢ 𝐴 = (Atoms‘𝐾) | 
| dalem1.o | ⊢ 𝑂 = (LPlanes‘𝐾) | 
| dalem1.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) | 
| Ref | Expression | 
|---|---|
| dalem2 | ⊢ (𝜑 → ((𝑃 ∨ 𝑄) ∨ (𝑆 ∨ 𝑇)) ∈ 𝑂) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dalema.ph | . . . 4 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | |
| 2 | 1 | dalemkehl 39626 | . . 3 ⊢ (𝜑 → 𝐾 ∈ HL) | 
| 3 | 1 | dalempea 39629 | . . 3 ⊢ (𝜑 → 𝑃 ∈ 𝐴) | 
| 4 | 1 | dalemqea 39630 | . . 3 ⊢ (𝜑 → 𝑄 ∈ 𝐴) | 
| 5 | 1 | dalemsea 39632 | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝐴) | 
| 6 | 1 | dalemtea 39633 | . . 3 ⊢ (𝜑 → 𝑇 ∈ 𝐴) | 
| 7 | dalemc.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 8 | dalemc.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 9 | 7, 8 | hlatj4 39376 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ (𝑆 ∨ 𝑇)) = ((𝑃 ∨ 𝑆) ∨ (𝑄 ∨ 𝑇))) | 
| 10 | 2, 3, 4, 5, 6, 9 | syl122anc 1380 | . 2 ⊢ (𝜑 → ((𝑃 ∨ 𝑄) ∨ (𝑆 ∨ 𝑇)) = ((𝑃 ∨ 𝑆) ∨ (𝑄 ∨ 𝑇))) | 
| 11 | dalemc.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 12 | dalem1.o | . . . . 5 ⊢ 𝑂 = (LPlanes‘𝐾) | |
| 13 | dalem1.y | . . . . 5 ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) | |
| 14 | 1, 11, 7, 8, 12, 13 | dalempjsen 39656 | . . . 4 ⊢ (𝜑 → (𝑃 ∨ 𝑆) ∈ (LLines‘𝐾)) | 
| 15 | 1, 11, 7, 8, 12, 13 | dalemqnet 39655 | . . . . 5 ⊢ (𝜑 → 𝑄 ≠ 𝑇) | 
| 16 | eqid 2736 | . . . . . 6 ⊢ (LLines‘𝐾) = (LLines‘𝐾) | |
| 17 | 7, 8, 16 | llni2 39515 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ 𝑄 ≠ 𝑇) → (𝑄 ∨ 𝑇) ∈ (LLines‘𝐾)) | 
| 18 | 2, 4, 6, 15, 17 | syl31anc 1374 | . . . 4 ⊢ (𝜑 → (𝑄 ∨ 𝑇) ∈ (LLines‘𝐾)) | 
| 19 | 1, 11, 7, 8, 12, 13 | dalem1 39662 | . . . 4 ⊢ (𝜑 → (𝑃 ∨ 𝑆) ≠ (𝑄 ∨ 𝑇)) | 
| 20 | 1, 11, 7, 8, 12, 13 | dalemcea 39663 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | 
| 21 | 1 | dalemclpjs 39637 | . . . . 5 ⊢ (𝜑 → 𝐶 ≤ (𝑃 ∨ 𝑆)) | 
| 22 | 1 | dalemclqjt 39638 | . . . . 5 ⊢ (𝜑 → 𝐶 ≤ (𝑄 ∨ 𝑇)) | 
| 23 | eqid 2736 | . . . . . 6 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 24 | eqid 2736 | . . . . . 6 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
| 25 | 11, 23, 24, 8, 16 | 2llnm4 39573 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝐶 ∈ 𝐴 ∧ (𝑃 ∨ 𝑆) ∈ (LLines‘𝐾) ∧ (𝑄 ∨ 𝑇) ∈ (LLines‘𝐾)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇))) → ((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇)) ≠ (0.‘𝐾)) | 
| 26 | 2, 20, 14, 18, 21, 22, 25 | syl132anc 1389 | . . . 4 ⊢ (𝜑 → ((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇)) ≠ (0.‘𝐾)) | 
| 27 | 23, 24, 8, 16 | 2llnmat 39527 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ (𝑃 ∨ 𝑆) ∈ (LLines‘𝐾) ∧ (𝑄 ∨ 𝑇) ∈ (LLines‘𝐾)) ∧ ((𝑃 ∨ 𝑆) ≠ (𝑄 ∨ 𝑇) ∧ ((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇)) ≠ (0.‘𝐾))) → ((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇)) ∈ 𝐴) | 
| 28 | 2, 14, 18, 19, 26, 27 | syl32anc 1379 | . . 3 ⊢ (𝜑 → ((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇)) ∈ 𝐴) | 
| 29 | 7, 23, 8, 16, 12 | 2llnmj 39563 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∨ 𝑆) ∈ (LLines‘𝐾) ∧ (𝑄 ∨ 𝑇) ∈ (LLines‘𝐾)) → (((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇)) ∈ 𝐴 ↔ ((𝑃 ∨ 𝑆) ∨ (𝑄 ∨ 𝑇)) ∈ 𝑂)) | 
| 30 | 2, 14, 18, 29 | syl3anc 1372 | . . 3 ⊢ (𝜑 → (((𝑃 ∨ 𝑆)(meet‘𝐾)(𝑄 ∨ 𝑇)) ∈ 𝐴 ↔ ((𝑃 ∨ 𝑆) ∨ (𝑄 ∨ 𝑇)) ∈ 𝑂)) | 
| 31 | 28, 30 | mpbid 232 | . 2 ⊢ (𝜑 → ((𝑃 ∨ 𝑆) ∨ (𝑄 ∨ 𝑇)) ∈ 𝑂) | 
| 32 | 10, 31 | eqeltrd 2840 | 1 ⊢ (𝜑 → ((𝑃 ∨ 𝑄) ∨ (𝑆 ∨ 𝑇)) ∈ 𝑂) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 class class class wbr 5142 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 lecple 17305 joincjn 18358 meetcmee 18359 0.cp0 18469 Atomscatm 39265 HLchlt 39352 LLinesclln 39494 LPlanesclpl 39495 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-proset 18341 df-poset 18360 df-plt 18376 df-lub 18392 df-glb 18393 df-join 18394 df-meet 18395 df-p0 18471 df-lat 18478 df-clat 18545 df-oposet 39178 df-ol 39180 df-oml 39181 df-covers 39268 df-ats 39269 df-atl 39300 df-cvlat 39324 df-hlat 39353 df-llines 39501 df-lplanes 39502 | 
| This theorem is referenced by: dalemdea 39665 | 
| Copyright terms: Public domain | W3C validator |