| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dalem13 | Structured version Visualization version GIF version | ||
| Description: Lemma for dalem14 39638. (Contributed by NM, 21-Jul-2012.) |
| Ref | Expression |
|---|---|
| dalema.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
| dalemc.l | ⊢ ≤ = (le‘𝐾) |
| dalemc.j | ⊢ ∨ = (join‘𝐾) |
| dalemc.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| dalem13.o | ⊢ 𝑂 = (LPlanes‘𝐾) |
| dalem13.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
| dalem13.z | ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) |
| dalem13.w | ⊢ 𝑊 = (𝑌 ∨ 𝐶) |
| Ref | Expression |
|---|---|
| dalem13 | ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → (𝑌 ∨ 𝑍) = 𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dalema.ph | . . . 4 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | |
| 2 | 1 | dalemkehl 39584 | . . 3 ⊢ (𝜑 → 𝐾 ∈ HL) |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → 𝐾 ∈ HL) |
| 4 | 1 | dalemyeo 39593 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑂) |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → 𝑌 ∈ 𝑂) |
| 6 | 1 | dalemzeo 39594 | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑂) |
| 7 | 6 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → 𝑍 ∈ 𝑂) |
| 8 | dalemc.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 9 | dalemc.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 10 | dalemc.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 11 | dalem13.o | . . 3 ⊢ 𝑂 = (LPlanes‘𝐾) | |
| 12 | eqid 2734 | . . 3 ⊢ (LVols‘𝐾) = (LVols‘𝐾) | |
| 13 | dalem13.y | . . 3 ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) | |
| 14 | dalem13.z | . . 3 ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) | |
| 15 | dalem13.w | . . 3 ⊢ 𝑊 = (𝑌 ∨ 𝐶) | |
| 16 | 1, 8, 9, 10, 11, 12, 13, 14, 15 | dalem9 39633 | . 2 ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → 𝑊 ∈ (LVols‘𝐾)) |
| 17 | 1 | dalemkelat 39585 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Lat) |
| 18 | 1, 11 | dalemyeb 39610 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐾)) |
| 19 | 1, 10 | dalemceb 39599 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ (Base‘𝐾)) |
| 20 | eqid 2734 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 21 | 20, 8, 9 | latlej1 18462 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝐶 ∈ (Base‘𝐾)) → 𝑌 ≤ (𝑌 ∨ 𝐶)) |
| 22 | 17, 18, 19, 21 | syl3anc 1372 | . . . 4 ⊢ (𝜑 → 𝑌 ≤ (𝑌 ∨ 𝐶)) |
| 23 | 22, 15 | breqtrrdi 5165 | . . 3 ⊢ (𝜑 → 𝑌 ≤ 𝑊) |
| 24 | 23 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → 𝑌 ≤ 𝑊) |
| 25 | 1, 8, 9, 10, 11, 13, 14, 15 | dalem8 39631 | . . 3 ⊢ (𝜑 → 𝑍 ≤ 𝑊) |
| 26 | 25 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → 𝑍 ≤ 𝑊) |
| 27 | simpr 484 | . 2 ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → 𝑌 ≠ 𝑍) | |
| 28 | 8, 9, 11, 12 | 2lplnj 39581 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂 ∧ 𝑊 ∈ (LVols‘𝐾)) ∧ (𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊 ∧ 𝑌 ≠ 𝑍)) → (𝑌 ∨ 𝑍) = 𝑊) |
| 29 | 3, 5, 7, 16, 24, 26, 27, 28 | syl133anc 1394 | 1 ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → (𝑌 ∨ 𝑍) = 𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 class class class wbr 5123 ‘cfv 6541 (class class class)co 7413 Basecbs 17229 lecple 17280 joincjn 18327 Latclat 18445 Atomscatm 39223 HLchlt 39310 LPlanesclpl 39453 LVolsclvol 39454 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-proset 18310 df-poset 18329 df-plt 18344 df-lub 18360 df-glb 18361 df-join 18362 df-meet 18363 df-p0 18439 df-lat 18446 df-clat 18513 df-oposet 39136 df-ol 39138 df-oml 39139 df-covers 39226 df-ats 39227 df-atl 39258 df-cvlat 39282 df-hlat 39311 df-llines 39459 df-lplanes 39460 df-lvols 39461 |
| This theorem is referenced by: dalem14 39638 |
| Copyright terms: Public domain | W3C validator |