| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dalem13 | Structured version Visualization version GIF version | ||
| Description: Lemma for dalem14 39666. (Contributed by NM, 21-Jul-2012.) |
| Ref | Expression |
|---|---|
| dalema.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
| dalemc.l | ⊢ ≤ = (le‘𝐾) |
| dalemc.j | ⊢ ∨ = (join‘𝐾) |
| dalemc.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| dalem13.o | ⊢ 𝑂 = (LPlanes‘𝐾) |
| dalem13.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
| dalem13.z | ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) |
| dalem13.w | ⊢ 𝑊 = (𝑌 ∨ 𝐶) |
| Ref | Expression |
|---|---|
| dalem13 | ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → (𝑌 ∨ 𝑍) = 𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dalema.ph | . . . 4 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | |
| 2 | 1 | dalemkehl 39612 | . . 3 ⊢ (𝜑 → 𝐾 ∈ HL) |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → 𝐾 ∈ HL) |
| 4 | 1 | dalemyeo 39621 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑂) |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → 𝑌 ∈ 𝑂) |
| 6 | 1 | dalemzeo 39622 | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑂) |
| 7 | 6 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → 𝑍 ∈ 𝑂) |
| 8 | dalemc.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 9 | dalemc.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 10 | dalemc.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 11 | dalem13.o | . . 3 ⊢ 𝑂 = (LPlanes‘𝐾) | |
| 12 | eqid 2730 | . . 3 ⊢ (LVols‘𝐾) = (LVols‘𝐾) | |
| 13 | dalem13.y | . . 3 ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) | |
| 14 | dalem13.z | . . 3 ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) | |
| 15 | dalem13.w | . . 3 ⊢ 𝑊 = (𝑌 ∨ 𝐶) | |
| 16 | 1, 8, 9, 10, 11, 12, 13, 14, 15 | dalem9 39661 | . 2 ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → 𝑊 ∈ (LVols‘𝐾)) |
| 17 | 1 | dalemkelat 39613 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Lat) |
| 18 | 1, 11 | dalemyeb 39638 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐾)) |
| 19 | 1, 10 | dalemceb 39627 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ (Base‘𝐾)) |
| 20 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 21 | 20, 8, 9 | latlej1 18413 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝐶 ∈ (Base‘𝐾)) → 𝑌 ≤ (𝑌 ∨ 𝐶)) |
| 22 | 17, 18, 19, 21 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → 𝑌 ≤ (𝑌 ∨ 𝐶)) |
| 23 | 22, 15 | breqtrrdi 5151 | . . 3 ⊢ (𝜑 → 𝑌 ≤ 𝑊) |
| 24 | 23 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → 𝑌 ≤ 𝑊) |
| 25 | 1, 8, 9, 10, 11, 13, 14, 15 | dalem8 39659 | . . 3 ⊢ (𝜑 → 𝑍 ≤ 𝑊) |
| 26 | 25 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → 𝑍 ≤ 𝑊) |
| 27 | simpr 484 | . 2 ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → 𝑌 ≠ 𝑍) | |
| 28 | 8, 9, 11, 12 | 2lplnj 39609 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂 ∧ 𝑊 ∈ (LVols‘𝐾)) ∧ (𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊 ∧ 𝑌 ≠ 𝑍)) → (𝑌 ∨ 𝑍) = 𝑊) |
| 29 | 3, 5, 7, 16, 24, 26, 27, 28 | syl133anc 1395 | 1 ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → (𝑌 ∨ 𝑍) = 𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 class class class wbr 5109 ‘cfv 6513 (class class class)co 7389 Basecbs 17185 lecple 17233 joincjn 18278 Latclat 18396 Atomscatm 39251 HLchlt 39338 LPlanesclpl 39481 LVolsclvol 39482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-proset 18261 df-poset 18280 df-plt 18295 df-lub 18311 df-glb 18312 df-join 18313 df-meet 18314 df-p0 18390 df-lat 18397 df-clat 18464 df-oposet 39164 df-ol 39166 df-oml 39167 df-covers 39254 df-ats 39255 df-atl 39286 df-cvlat 39310 df-hlat 39339 df-llines 39487 df-lplanes 39488 df-lvols 39489 |
| This theorem is referenced by: dalem14 39666 |
| Copyright terms: Public domain | W3C validator |