Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dalem13 | Structured version Visualization version GIF version |
Description: Lemma for dalem14 37618. (Contributed by NM, 21-Jul-2012.) |
Ref | Expression |
---|---|
dalema.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
dalemc.l | ⊢ ≤ = (le‘𝐾) |
dalemc.j | ⊢ ∨ = (join‘𝐾) |
dalemc.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dalem13.o | ⊢ 𝑂 = (LPlanes‘𝐾) |
dalem13.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
dalem13.z | ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) |
dalem13.w | ⊢ 𝑊 = (𝑌 ∨ 𝐶) |
Ref | Expression |
---|---|
dalem13 | ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → (𝑌 ∨ 𝑍) = 𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalema.ph | . . . 4 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | |
2 | 1 | dalemkehl 37564 | . . 3 ⊢ (𝜑 → 𝐾 ∈ HL) |
3 | 2 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → 𝐾 ∈ HL) |
4 | 1 | dalemyeo 37573 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑂) |
5 | 4 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → 𝑌 ∈ 𝑂) |
6 | 1 | dalemzeo 37574 | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑂) |
7 | 6 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → 𝑍 ∈ 𝑂) |
8 | dalemc.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
9 | dalemc.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
10 | dalemc.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
11 | dalem13.o | . . 3 ⊢ 𝑂 = (LPlanes‘𝐾) | |
12 | eqid 2738 | . . 3 ⊢ (LVols‘𝐾) = (LVols‘𝐾) | |
13 | dalem13.y | . . 3 ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) | |
14 | dalem13.z | . . 3 ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) | |
15 | dalem13.w | . . 3 ⊢ 𝑊 = (𝑌 ∨ 𝐶) | |
16 | 1, 8, 9, 10, 11, 12, 13, 14, 15 | dalem9 37613 | . 2 ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → 𝑊 ∈ (LVols‘𝐾)) |
17 | 1 | dalemkelat 37565 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Lat) |
18 | 1, 11 | dalemyeb 37590 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐾)) |
19 | 1, 10 | dalemceb 37579 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ (Base‘𝐾)) |
20 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
21 | 20, 8, 9 | latlej1 18081 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝐶 ∈ (Base‘𝐾)) → 𝑌 ≤ (𝑌 ∨ 𝐶)) |
22 | 17, 18, 19, 21 | syl3anc 1369 | . . . 4 ⊢ (𝜑 → 𝑌 ≤ (𝑌 ∨ 𝐶)) |
23 | 22, 15 | breqtrrdi 5112 | . . 3 ⊢ (𝜑 → 𝑌 ≤ 𝑊) |
24 | 23 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → 𝑌 ≤ 𝑊) |
25 | 1, 8, 9, 10, 11, 13, 14, 15 | dalem8 37611 | . . 3 ⊢ (𝜑 → 𝑍 ≤ 𝑊) |
26 | 25 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → 𝑍 ≤ 𝑊) |
27 | simpr 484 | . 2 ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → 𝑌 ≠ 𝑍) | |
28 | 8, 9, 11, 12 | 2lplnj 37561 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂 ∧ 𝑊 ∈ (LVols‘𝐾)) ∧ (𝑌 ≤ 𝑊 ∧ 𝑍 ≤ 𝑊 ∧ 𝑌 ≠ 𝑍)) → (𝑌 ∨ 𝑍) = 𝑊) |
29 | 3, 5, 7, 16, 24, 26, 27, 28 | syl133anc 1391 | 1 ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → (𝑌 ∨ 𝑍) = 𝑊) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 lecple 16895 joincjn 17944 Latclat 18064 Atomscatm 37204 HLchlt 37291 LPlanesclpl 37433 LVolsclvol 37434 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-proset 17928 df-poset 17946 df-plt 17963 df-lub 17979 df-glb 17980 df-join 17981 df-meet 17982 df-p0 18058 df-lat 18065 df-clat 18132 df-oposet 37117 df-ol 37119 df-oml 37120 df-covers 37207 df-ats 37208 df-atl 37239 df-cvlat 37263 df-hlat 37292 df-llines 37439 df-lplanes 37440 df-lvols 37441 |
This theorem is referenced by: dalem14 37618 |
Copyright terms: Public domain | W3C validator |