![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dalem22 | Structured version Visualization version GIF version |
Description: Lemma for dath 38910. Show that lines ππ and ππ determine a plane. (Contributed by NM, 2-Aug-2012.) |
Ref | Expression |
---|---|
dalem.ph | β’ (π β (((πΎ β HL β§ πΆ β (BaseβπΎ)) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (π β π β§ π β π) β§ ((Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π ) β§ Β¬ πΆ β€ (π β¨ π)) β§ (Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π)) β§ (πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π))))) |
dalem.l | β’ β€ = (leβπΎ) |
dalem.j | β’ β¨ = (joinβπΎ) |
dalem.a | β’ π΄ = (AtomsβπΎ) |
dalem.ps | β’ (π β ((π β π΄ β§ π β π΄) β§ Β¬ π β€ π β§ (π β π β§ Β¬ π β€ π β§ πΆ β€ (π β¨ π)))) |
dalem22.o | β’ π = (LPlanesβπΎ) |
dalem22.y | β’ π = ((π β¨ π) β¨ π ) |
dalem22.z | β’ π = ((π β¨ π) β¨ π) |
Ref | Expression |
---|---|
dalem22 | β’ ((π β§ π = π β§ π) β ((π β¨ π) β¨ (π β¨ π)) β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalem.ph | . . 3 β’ (π β (((πΎ β HL β§ πΆ β (BaseβπΎ)) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (π β π β§ π β π) β§ ((Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π ) β§ Β¬ πΆ β€ (π β¨ π)) β§ (Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π)) β§ (πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π))))) | |
2 | dalem.l | . . 3 β’ β€ = (leβπΎ) | |
3 | dalem.j | . . 3 β’ β¨ = (joinβπΎ) | |
4 | dalem.a | . . 3 β’ π΄ = (AtomsβπΎ) | |
5 | dalem.ps | . . 3 β’ (π β ((π β π΄ β§ π β π΄) β§ Β¬ π β€ π β§ (π β π β§ Β¬ π β€ π β§ πΆ β€ (π β¨ π)))) | |
6 | eqid 2732 | . . 3 β’ (meetβπΎ) = (meetβπΎ) | |
7 | dalem22.o | . . 3 β’ π = (LPlanesβπΎ) | |
8 | dalem22.y | . . 3 β’ π = ((π β¨ π) β¨ π ) | |
9 | dalem22.z | . . 3 β’ π = ((π β¨ π) β¨ π) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | dalem21 38868 | . 2 β’ ((π β§ π = π β§ π) β ((π β¨ π)(meetβπΎ)(π β¨ π)) β π΄) |
11 | 1 | dalemkehl 38797 | . . . . 5 β’ (π β πΎ β HL) |
12 | 11 | adantr 481 | . . . 4 β’ ((π β§ π) β πΎ β HL) |
13 | 1, 2, 3, 4, 5 | dalemcjden 38866 | . . . 4 β’ ((π β§ π) β (π β¨ π) β (LLinesβπΎ)) |
14 | 1, 2, 3, 4, 7, 8 | dalempjsen 38827 | . . . . 5 β’ (π β (π β¨ π) β (LLinesβπΎ)) |
15 | 14 | adantr 481 | . . . 4 β’ ((π β§ π) β (π β¨ π) β (LLinesβπΎ)) |
16 | eqid 2732 | . . . . 5 β’ (LLinesβπΎ) = (LLinesβπΎ) | |
17 | 3, 6, 4, 16, 7 | 2llnmj 38734 | . . . 4 β’ ((πΎ β HL β§ (π β¨ π) β (LLinesβπΎ) β§ (π β¨ π) β (LLinesβπΎ)) β (((π β¨ π)(meetβπΎ)(π β¨ π)) β π΄ β ((π β¨ π) β¨ (π β¨ π)) β π)) |
18 | 12, 13, 15, 17 | syl3anc 1371 | . . 3 β’ ((π β§ π) β (((π β¨ π)(meetβπΎ)(π β¨ π)) β π΄ β ((π β¨ π) β¨ (π β¨ π)) β π)) |
19 | 18 | 3adant2 1131 | . 2 β’ ((π β§ π = π β§ π) β (((π β¨ π)(meetβπΎ)(π β¨ π)) β π΄ β ((π β¨ π) β¨ (π β¨ π)) β π)) |
20 | 10, 19 | mpbid 231 | 1 β’ ((π β§ π = π β§ π) β ((π β¨ π) β¨ (π β¨ π)) β π) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 β wne 2940 class class class wbr 5148 βcfv 6543 (class class class)co 7411 Basecbs 17148 lecple 17208 joincjn 18268 meetcmee 18269 Atomscatm 38436 HLchlt 38523 LLinesclln 38665 LPlanesclpl 38666 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-proset 18252 df-poset 18270 df-plt 18287 df-lub 18303 df-glb 18304 df-join 18305 df-meet 18306 df-p0 18382 df-lat 18389 df-clat 18456 df-oposet 38349 df-ol 38351 df-oml 38352 df-covers 38439 df-ats 38440 df-atl 38471 df-cvlat 38495 df-hlat 38524 df-llines 38672 df-lplanes 38673 |
This theorem is referenced by: dalem23 38870 |
Copyright terms: Public domain | W3C validator |