Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalemply Structured version   Visualization version   GIF version

Theorem dalemply 38828
Description: Lemma for dath 38910. Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012.)
Hypotheses
Ref Expression
dalema.ph (πœ‘ ↔ (((𝐾 ∈ HL ∧ 𝐢 ∈ (Baseβ€˜πΎ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (π‘Œ ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((Β¬ 𝐢 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝐢 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝐢 ≀ (𝑅 ∨ 𝑃)) ∧ (Β¬ 𝐢 ≀ (𝑆 ∨ 𝑇) ∧ Β¬ 𝐢 ≀ (𝑇 ∨ π‘ˆ) ∧ Β¬ 𝐢 ≀ (π‘ˆ ∨ 𝑆)) ∧ (𝐢 ≀ (𝑃 ∨ 𝑆) ∧ 𝐢 ≀ (𝑄 ∨ 𝑇) ∧ 𝐢 ≀ (𝑅 ∨ π‘ˆ)))))
dalemc.l ≀ = (leβ€˜πΎ)
dalemc.j ∨ = (joinβ€˜πΎ)
dalemc.a 𝐴 = (Atomsβ€˜πΎ)
dalempnes.o 𝑂 = (LPlanesβ€˜πΎ)
dalempnes.y π‘Œ = ((𝑃 ∨ 𝑄) ∨ 𝑅)
Assertion
Ref Expression
dalemply (πœ‘ β†’ 𝑃 ≀ π‘Œ)

Proof of Theorem dalemply
StepHypRef Expression
1 dalema.ph . . . . 5 (πœ‘ ↔ (((𝐾 ∈ HL ∧ 𝐢 ∈ (Baseβ€˜πΎ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (π‘Œ ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((Β¬ 𝐢 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝐢 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝐢 ≀ (𝑅 ∨ 𝑃)) ∧ (Β¬ 𝐢 ≀ (𝑆 ∨ 𝑇) ∧ Β¬ 𝐢 ≀ (𝑇 ∨ π‘ˆ) ∧ Β¬ 𝐢 ≀ (π‘ˆ ∨ 𝑆)) ∧ (𝐢 ≀ (𝑃 ∨ 𝑆) ∧ 𝐢 ≀ (𝑄 ∨ 𝑇) ∧ 𝐢 ≀ (𝑅 ∨ π‘ˆ)))))
21dalemkelat 38798 . . . 4 (πœ‘ β†’ 𝐾 ∈ Lat)
3 dalemc.a . . . . 5 𝐴 = (Atomsβ€˜πΎ)
41, 3dalempeb 38813 . . . 4 (πœ‘ β†’ 𝑃 ∈ (Baseβ€˜πΎ))
51dalemkehl 38797 . . . . 5 (πœ‘ β†’ 𝐾 ∈ HL)
61dalemqea 38801 . . . . 5 (πœ‘ β†’ 𝑄 ∈ 𝐴)
71dalemrea 38802 . . . . 5 (πœ‘ β†’ 𝑅 ∈ 𝐴)
8 eqid 2732 . . . . . 6 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
9 dalemc.j . . . . . 6 ∨ = (joinβ€˜πΎ)
108, 9, 3hlatjcl 38540 . . . . 5 ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) β†’ (𝑄 ∨ 𝑅) ∈ (Baseβ€˜πΎ))
115, 6, 7, 10syl3anc 1371 . . . 4 (πœ‘ β†’ (𝑄 ∨ 𝑅) ∈ (Baseβ€˜πΎ))
12 dalemc.l . . . . 5 ≀ = (leβ€˜πΎ)
138, 12, 9latlej1 18405 . . . 4 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Baseβ€˜πΎ) ∧ (𝑄 ∨ 𝑅) ∈ (Baseβ€˜πΎ)) β†’ 𝑃 ≀ (𝑃 ∨ (𝑄 ∨ 𝑅)))
142, 4, 11, 13syl3anc 1371 . . 3 (πœ‘ β†’ 𝑃 ≀ (𝑃 ∨ (𝑄 ∨ 𝑅)))
151dalempea 38800 . . . 4 (πœ‘ β†’ 𝑃 ∈ 𝐴)
169, 3hlatjass 38543 . . . 4 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑄) ∨ 𝑅) = (𝑃 ∨ (𝑄 ∨ 𝑅)))
175, 15, 6, 7, 16syl13anc 1372 . . 3 (πœ‘ β†’ ((𝑃 ∨ 𝑄) ∨ 𝑅) = (𝑃 ∨ (𝑄 ∨ 𝑅)))
1814, 17breqtrrd 5176 . 2 (πœ‘ β†’ 𝑃 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))
19 dalempnes.y . 2 π‘Œ = ((𝑃 ∨ 𝑄) ∨ 𝑅)
2018, 19breqtrrdi 5190 1 (πœ‘ β†’ 𝑃 ≀ π‘Œ)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7411  Basecbs 17148  lecple 17208  joincjn 18268  Latclat 18388  Atomscatm 38436  HLchlt 38523  LPlanesclpl 38666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-proset 18252  df-poset 18270  df-lub 18303  df-glb 18304  df-join 18305  df-meet 18306  df-lat 18389  df-ats 38440  df-atl 38471  df-cvlat 38495  df-hlat 38524
This theorem is referenced by:  dalem21  38868  dalem23  38870  dalem24  38871  dalem27  38873
  Copyright terms: Public domain W3C validator