![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dalemply | Structured version Visualization version GIF version |
Description: Lemma for dath 35761. Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012.) |
Ref | Expression |
---|---|
dalema.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
dalemc.l | ⊢ ≤ = (le‘𝐾) |
dalemc.j | ⊢ ∨ = (join‘𝐾) |
dalemc.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dalempnes.o | ⊢ 𝑂 = (LPlanes‘𝐾) |
dalempnes.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
Ref | Expression |
---|---|
dalemply | ⊢ (𝜑 → 𝑃 ≤ 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalema.ph | . . . . 5 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | |
2 | 1 | dalemkelat 35649 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ Lat) |
3 | dalemc.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | 1, 3 | dalempeb 35664 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ (Base‘𝐾)) |
5 | 1 | dalemkehl 35648 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ HL) |
6 | 1 | dalemqea 35652 | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
7 | 1 | dalemrea 35653 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ 𝐴) |
8 | eqid 2803 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
9 | dalemc.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
10 | 8, 9, 3 | hlatjcl 35392 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑄 ∨ 𝑅) ∈ (Base‘𝐾)) |
11 | 5, 6, 7, 10 | syl3anc 1491 | . . . 4 ⊢ (𝜑 → (𝑄 ∨ 𝑅) ∈ (Base‘𝐾)) |
12 | dalemc.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
13 | 8, 12, 9 | latlej1 17379 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑄 ∨ 𝑅) ∈ (Base‘𝐾)) → 𝑃 ≤ (𝑃 ∨ (𝑄 ∨ 𝑅))) |
14 | 2, 4, 11, 13 | syl3anc 1491 | . . 3 ⊢ (𝜑 → 𝑃 ≤ (𝑃 ∨ (𝑄 ∨ 𝑅))) |
15 | 1 | dalempea 35651 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ 𝐴) |
16 | 9, 3 | hlatjass 35395 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) = (𝑃 ∨ (𝑄 ∨ 𝑅))) |
17 | 5, 15, 6, 7, 16 | syl13anc 1492 | . . 3 ⊢ (𝜑 → ((𝑃 ∨ 𝑄) ∨ 𝑅) = (𝑃 ∨ (𝑄 ∨ 𝑅))) |
18 | 14, 17 | breqtrrd 4875 | . 2 ⊢ (𝜑 → 𝑃 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) |
19 | dalempnes.y | . 2 ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) | |
20 | 18, 19 | syl6breqr 4889 | 1 ⊢ (𝜑 → 𝑃 ≤ 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 class class class wbr 4847 ‘cfv 6105 (class class class)co 6882 Basecbs 16188 lecple 16278 joincjn 17263 Latclat 17364 Atomscatm 35288 HLchlt 35375 LPlanesclpl 35517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2379 ax-ext 2781 ax-rep 4968 ax-sep 4979 ax-nul 4987 ax-pow 5039 ax-pr 5101 ax-un 7187 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2593 df-eu 2611 df-clab 2790 df-cleq 2796 df-clel 2799 df-nfc 2934 df-ne 2976 df-ral 3098 df-rex 3099 df-reu 3100 df-rab 3102 df-v 3391 df-sbc 3638 df-csb 3733 df-dif 3776 df-un 3778 df-in 3780 df-ss 3787 df-nul 4120 df-if 4282 df-pw 4355 df-sn 4373 df-pr 4375 df-op 4379 df-uni 4633 df-iun 4716 df-br 4848 df-opab 4910 df-mpt 4927 df-id 5224 df-xp 5322 df-rel 5323 df-cnv 5324 df-co 5325 df-dm 5326 df-rn 5327 df-res 5328 df-ima 5329 df-iota 6068 df-fun 6107 df-fn 6108 df-f 6109 df-f1 6110 df-fo 6111 df-f1o 6112 df-fv 6113 df-riota 6843 df-ov 6885 df-oprab 6886 df-proset 17247 df-poset 17265 df-lub 17293 df-glb 17294 df-join 17295 df-meet 17296 df-lat 17365 df-ats 35292 df-atl 35323 df-cvlat 35347 df-hlat 35376 |
This theorem is referenced by: dalem21 35719 dalem23 35721 dalem24 35722 dalem27 35724 |
Copyright terms: Public domain | W3C validator |