![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dalemply | Structured version Visualization version GIF version |
Description: Lemma for dath 38910. Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012.) |
Ref | Expression |
---|---|
dalema.ph | β’ (π β (((πΎ β HL β§ πΆ β (BaseβπΎ)) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (π β π β§ π β π) β§ ((Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π ) β§ Β¬ πΆ β€ (π β¨ π)) β§ (Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π)) β§ (πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π))))) |
dalemc.l | β’ β€ = (leβπΎ) |
dalemc.j | β’ β¨ = (joinβπΎ) |
dalemc.a | β’ π΄ = (AtomsβπΎ) |
dalempnes.o | β’ π = (LPlanesβπΎ) |
dalempnes.y | β’ π = ((π β¨ π) β¨ π ) |
Ref | Expression |
---|---|
dalemply | β’ (π β π β€ π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalema.ph | . . . . 5 β’ (π β (((πΎ β HL β§ πΆ β (BaseβπΎ)) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (π β π β§ π β π) β§ ((Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π ) β§ Β¬ πΆ β€ (π β¨ π)) β§ (Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π)) β§ (πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π))))) | |
2 | 1 | dalemkelat 38798 | . . . 4 β’ (π β πΎ β Lat) |
3 | dalemc.a | . . . . 5 β’ π΄ = (AtomsβπΎ) | |
4 | 1, 3 | dalempeb 38813 | . . . 4 β’ (π β π β (BaseβπΎ)) |
5 | 1 | dalemkehl 38797 | . . . . 5 β’ (π β πΎ β HL) |
6 | 1 | dalemqea 38801 | . . . . 5 β’ (π β π β π΄) |
7 | 1 | dalemrea 38802 | . . . . 5 β’ (π β π β π΄) |
8 | eqid 2732 | . . . . . 6 β’ (BaseβπΎ) = (BaseβπΎ) | |
9 | dalemc.j | . . . . . 6 β’ β¨ = (joinβπΎ) | |
10 | 8, 9, 3 | hlatjcl 38540 | . . . . 5 β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β (π β¨ π ) β (BaseβπΎ)) |
11 | 5, 6, 7, 10 | syl3anc 1371 | . . . 4 β’ (π β (π β¨ π ) β (BaseβπΎ)) |
12 | dalemc.l | . . . . 5 β’ β€ = (leβπΎ) | |
13 | 8, 12, 9 | latlej1 18405 | . . . 4 β’ ((πΎ β Lat β§ π β (BaseβπΎ) β§ (π β¨ π ) β (BaseβπΎ)) β π β€ (π β¨ (π β¨ π ))) |
14 | 2, 4, 11, 13 | syl3anc 1371 | . . 3 β’ (π β π β€ (π β¨ (π β¨ π ))) |
15 | 1 | dalempea 38800 | . . . 4 β’ (π β π β π΄) |
16 | 9, 3 | hlatjass 38543 | . . . 4 β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β ((π β¨ π) β¨ π ) = (π β¨ (π β¨ π ))) |
17 | 5, 15, 6, 7, 16 | syl13anc 1372 | . . 3 β’ (π β ((π β¨ π) β¨ π ) = (π β¨ (π β¨ π ))) |
18 | 14, 17 | breqtrrd 5176 | . 2 β’ (π β π β€ ((π β¨ π) β¨ π )) |
19 | dalempnes.y | . 2 β’ π = ((π β¨ π) β¨ π ) | |
20 | 18, 19 | breqtrrdi 5190 | 1 β’ (π β π β€ π) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 class class class wbr 5148 βcfv 6543 (class class class)co 7411 Basecbs 17148 lecple 17208 joincjn 18268 Latclat 18388 Atomscatm 38436 HLchlt 38523 LPlanesclpl 38666 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-proset 18252 df-poset 18270 df-lub 18303 df-glb 18304 df-join 18305 df-meet 18306 df-lat 18389 df-ats 38440 df-atl 38471 df-cvlat 38495 df-hlat 38524 |
This theorem is referenced by: dalem21 38868 dalem23 38870 dalem24 38871 dalem27 38873 |
Copyright terms: Public domain | W3C validator |