Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dalemply | Structured version Visualization version GIF version |
Description: Lemma for dath 37962. Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012.) |
Ref | Expression |
---|---|
dalema.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
dalemc.l | ⊢ ≤ = (le‘𝐾) |
dalemc.j | ⊢ ∨ = (join‘𝐾) |
dalemc.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dalempnes.o | ⊢ 𝑂 = (LPlanes‘𝐾) |
dalempnes.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
Ref | Expression |
---|---|
dalemply | ⊢ (𝜑 → 𝑃 ≤ 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalema.ph | . . . . 5 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | |
2 | 1 | dalemkelat 37850 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ Lat) |
3 | dalemc.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | 1, 3 | dalempeb 37865 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ (Base‘𝐾)) |
5 | 1 | dalemkehl 37849 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ HL) |
6 | 1 | dalemqea 37853 | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
7 | 1 | dalemrea 37854 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ 𝐴) |
8 | eqid 2737 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
9 | dalemc.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
10 | 8, 9, 3 | hlatjcl 37593 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑄 ∨ 𝑅) ∈ (Base‘𝐾)) |
11 | 5, 6, 7, 10 | syl3anc 1370 | . . . 4 ⊢ (𝜑 → (𝑄 ∨ 𝑅) ∈ (Base‘𝐾)) |
12 | dalemc.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
13 | 8, 12, 9 | latlej1 18233 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑄 ∨ 𝑅) ∈ (Base‘𝐾)) → 𝑃 ≤ (𝑃 ∨ (𝑄 ∨ 𝑅))) |
14 | 2, 4, 11, 13 | syl3anc 1370 | . . 3 ⊢ (𝜑 → 𝑃 ≤ (𝑃 ∨ (𝑄 ∨ 𝑅))) |
15 | 1 | dalempea 37852 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ 𝐴) |
16 | 9, 3 | hlatjass 37596 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) = (𝑃 ∨ (𝑄 ∨ 𝑅))) |
17 | 5, 15, 6, 7, 16 | syl13anc 1371 | . . 3 ⊢ (𝜑 → ((𝑃 ∨ 𝑄) ∨ 𝑅) = (𝑃 ∨ (𝑄 ∨ 𝑅))) |
18 | 14, 17 | breqtrrd 5113 | . 2 ⊢ (𝜑 → 𝑃 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) |
19 | dalempnes.y | . 2 ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) | |
20 | 18, 19 | breqtrrdi 5127 | 1 ⊢ (𝜑 → 𝑃 ≤ 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 class class class wbr 5085 ‘cfv 6463 (class class class)co 7313 Basecbs 16979 lecple 17036 joincjn 18096 Latclat 18216 Atomscatm 37489 HLchlt 37576 LPlanesclpl 37718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-id 5505 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-riota 7270 df-ov 7316 df-oprab 7317 df-proset 18080 df-poset 18098 df-lub 18131 df-glb 18132 df-join 18133 df-meet 18134 df-lat 18217 df-ats 37493 df-atl 37524 df-cvlat 37548 df-hlat 37577 |
This theorem is referenced by: dalem21 37920 dalem23 37922 dalem24 37923 dalem27 37925 |
Copyright terms: Public domain | W3C validator |