Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalemkelat Structured version   Visualization version   GIF version

Theorem dalemkelat 39607
Description: Lemma for dath 39719. Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012.)
Hypothesis
Ref Expression
dalema.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
Assertion
Ref Expression
dalemkelat (𝜑𝐾 ∈ Lat)

Proof of Theorem dalemkelat
StepHypRef Expression
1 dalema.ph . . 3 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
21dalemkehl 39606 . 2 (𝜑𝐾 ∈ HL)
32hllatd 39347 1 (𝜑𝐾 ∈ Lat)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wcel 2109   class class class wbr 5092  cfv 6482  (class class class)co 7349  Basecbs 17120  Latclat 18337  HLchlt 39333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-dm 5629  df-iota 6438  df-fv 6490  df-ov 7352  df-atl 39281  df-cvlat 39305  df-hlat 39334
This theorem is referenced by:  dalemcnes  39633  dalempnes  39634  dalemqnet  39635  dalemply  39637  dalemsly  39638  dalem1  39642  dalemcea  39643  dalem3  39647  dalem4  39648  dalem5  39650  dalem8  39653  dalem-cly  39654  dalem10  39656  dalem13  39659  dalem16  39662  dalem17  39663  dalem21  39677  dalem25  39681  dalem27  39682  dalem38  39693  dalem39  39694  dalem43  39698  dalem44  39699  dalem45  39700  dalem48  39703  dalem54  39709  dalem55  39710  dalem56  39711  dalem57  39712  dalem60  39715
  Copyright terms: Public domain W3C validator