Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalemkelat Structured version   Visualization version   GIF version

Theorem dalemkelat 39606
Description: Lemma for dath 39718. Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012.)
Hypothesis
Ref Expression
dalema.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
Assertion
Ref Expression
dalemkelat (𝜑𝐾 ∈ Lat)

Proof of Theorem dalemkelat
StepHypRef Expression
1 dalema.ph . . 3 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
21dalemkehl 39605 . 2 (𝜑𝐾 ∈ HL)
32hllatd 39345 1 (𝜑𝐾 ∈ Lat)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wcel 2105   class class class wbr 5147  cfv 6562  (class class class)co 7430  Basecbs 17244  Latclat 18488  HLchlt 39331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-dm 5698  df-iota 6515  df-fv 6570  df-ov 7433  df-atl 39279  df-cvlat 39303  df-hlat 39332
This theorem is referenced by:  dalemcnes  39632  dalempnes  39633  dalemqnet  39634  dalemply  39636  dalemsly  39637  dalem1  39641  dalemcea  39642  dalem3  39646  dalem4  39647  dalem5  39649  dalem8  39652  dalem-cly  39653  dalem10  39655  dalem13  39658  dalem16  39661  dalem17  39662  dalem21  39676  dalem25  39680  dalem27  39681  dalem38  39692  dalem39  39693  dalem43  39697  dalem44  39698  dalem45  39699  dalem48  39702  dalem54  39708  dalem55  39709  dalem56  39710  dalem57  39711  dalem60  39714
  Copyright terms: Public domain W3C validator