Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem57 Structured version   Visualization version   GIF version

Theorem dalem57 35803
Description: Lemma for dath 35810. Axis of perspectivity point 𝐷 is on the auxiliary line 𝐵. (Contributed by NM, 9-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalem57.m = (meet‘𝐾)
dalem57.o 𝑂 = (LPlanes‘𝐾)
dalem57.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem57.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem57.d 𝐷 = ((𝑃 𝑄) (𝑆 𝑇))
dalem57.g 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
dalem57.h 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
dalem57.i 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
dalem57.b1 𝐵 = (((𝐺 𝐻) 𝐼) 𝑌)
Assertion
Ref Expression
dalem57 ((𝜑𝑌 = 𝑍𝜓) → 𝐷 𝐵)

Proof of Theorem dalem57
StepHypRef Expression
1 dalem.ph . . . . . . 7 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
2 dalem.l . . . . . . 7 = (le‘𝐾)
3 dalem.j . . . . . . 7 = (join‘𝐾)
4 dalem.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
5 dalem.ps . . . . . . 7 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
6 dalem57.m . . . . . . 7 = (meet‘𝐾)
7 dalem57.o . . . . . . 7 𝑂 = (LPlanes‘𝐾)
8 dalem57.y . . . . . . 7 𝑌 = ((𝑃 𝑄) 𝑅)
9 dalem57.z . . . . . . 7 𝑍 = ((𝑆 𝑇) 𝑈)
10 dalem57.g . . . . . . 7 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
11 dalem57.h . . . . . . 7 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
12 dalem57.i . . . . . . 7 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
13 dalem57.b1 . . . . . . 7 𝐵 = (((𝐺 𝐻) 𝐼) 𝑌)
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13dalem55 35801 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑃 𝑄)) = ((𝐺 𝐻) 𝐵))
151dalemkelat 35698 . . . . . . . 8 (𝜑𝐾 ∈ Lat)
16153ad2ant1 1167 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ Lat)
171dalemkehl 35697 . . . . . . . . 9 (𝜑𝐾 ∈ HL)
18173ad2ant1 1167 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ HL)
191, 2, 3, 4, 5, 6, 7, 8, 9, 10dalem23 35770 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → 𝐺𝐴)
201, 2, 3, 4, 5, 6, 7, 8, 9, 11dalem29 35775 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → 𝐻𝐴)
21 eqid 2825 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
2221, 3, 4hlatjcl 35441 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝐺𝐴𝐻𝐴) → (𝐺 𝐻) ∈ (Base‘𝐾))
2318, 19, 20, 22syl3anc 1494 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → (𝐺 𝐻) ∈ (Base‘𝐾))
241, 3, 4dalempjqeb 35719 . . . . . . . 8 (𝜑 → (𝑃 𝑄) ∈ (Base‘𝐾))
25243ad2ant1 1167 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → (𝑃 𝑄) ∈ (Base‘𝐾))
2621, 2, 6latmle2 17437 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝐺 𝐻) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → ((𝐺 𝐻) (𝑃 𝑄)) (𝑃 𝑄))
2716, 23, 25, 26syl3anc 1494 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑃 𝑄)) (𝑃 𝑄))
2814, 27eqbrtrrd 4899 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐵) (𝑃 𝑄))
291, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13dalem56 35802 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑆 𝑇)) = ((𝐺 𝐻) 𝐵))
301, 3, 4dalemsjteb 35720 . . . . . . . 8 (𝜑 → (𝑆 𝑇) ∈ (Base‘𝐾))
31303ad2ant1 1167 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → (𝑆 𝑇) ∈ (Base‘𝐾))
3221, 2, 6latmle2 17437 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝐺 𝐻) ∈ (Base‘𝐾) ∧ (𝑆 𝑇) ∈ (Base‘𝐾)) → ((𝐺 𝐻) (𝑆 𝑇)) (𝑆 𝑇))
3316, 23, 31, 32syl3anc 1494 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑆 𝑇)) (𝑆 𝑇))
3429, 33eqbrtrrd 4899 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐵) (𝑆 𝑇))
351, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13dalem54 35800 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐵) ∈ 𝐴)
3621, 4atbase 35363 . . . . . . 7 (((𝐺 𝐻) 𝐵) ∈ 𝐴 → ((𝐺 𝐻) 𝐵) ∈ (Base‘𝐾))
3735, 36syl 17 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐵) ∈ (Base‘𝐾))
3821, 2, 6latlem12 17438 . . . . . 6 ((𝐾 ∈ Lat ∧ (((𝐺 𝐻) 𝐵) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝑆 𝑇) ∈ (Base‘𝐾))) → ((((𝐺 𝐻) 𝐵) (𝑃 𝑄) ∧ ((𝐺 𝐻) 𝐵) (𝑆 𝑇)) ↔ ((𝐺 𝐻) 𝐵) ((𝑃 𝑄) (𝑆 𝑇))))
3916, 37, 25, 31, 38syl13anc 1495 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ((((𝐺 𝐻) 𝐵) (𝑃 𝑄) ∧ ((𝐺 𝐻) 𝐵) (𝑆 𝑇)) ↔ ((𝐺 𝐻) 𝐵) ((𝑃 𝑄) (𝑆 𝑇))))
4028, 34, 39mpbi2and 703 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐵) ((𝑃 𝑄) (𝑆 𝑇)))
41 dalem57.d . . . 4 𝐷 = ((𝑃 𝑄) (𝑆 𝑇))
4240, 41syl6breqr 4917 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐵) 𝐷)
43 hlatl 35434 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
4418, 43syl 17 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ AtLat)
451, 2, 3, 4, 6, 7, 8, 9, 41dalemdea 35736 . . . . 5 (𝜑𝐷𝐴)
46453ad2ant1 1167 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐷𝐴)
472, 4atcmp 35385 . . . 4 ((𝐾 ∈ AtLat ∧ ((𝐺 𝐻) 𝐵) ∈ 𝐴𝐷𝐴) → (((𝐺 𝐻) 𝐵) 𝐷 ↔ ((𝐺 𝐻) 𝐵) = 𝐷))
4844, 35, 46, 47syl3anc 1494 . . 3 ((𝜑𝑌 = 𝑍𝜓) → (((𝐺 𝐻) 𝐵) 𝐷 ↔ ((𝐺 𝐻) 𝐵) = 𝐷))
4942, 48mpbid 224 . 2 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐵) = 𝐷)
50 eqid 2825 . . . . 5 (LLines‘𝐾) = (LLines‘𝐾)
511, 2, 3, 4, 5, 6, 50, 7, 8, 9, 10, 11, 12, 13dalem53 35799 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐵 ∈ (LLines‘𝐾))
5221, 50llnbase 35583 . . . 4 (𝐵 ∈ (LLines‘𝐾) → 𝐵 ∈ (Base‘𝐾))
5351, 52syl 17 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐵 ∈ (Base‘𝐾))
5421, 2, 6latmle2 17437 . . 3 ((𝐾 ∈ Lat ∧ (𝐺 𝐻) ∈ (Base‘𝐾) ∧ 𝐵 ∈ (Base‘𝐾)) → ((𝐺 𝐻) 𝐵) 𝐵)
5516, 23, 53, 54syl3anc 1494 . 2 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐵) 𝐵)
5649, 55eqbrtrrd 4899 1 ((𝜑𝑌 = 𝑍𝜓) → 𝐷 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  w3a 1111   = wceq 1656  wcel 2164  wne 2999   class class class wbr 4875  cfv 6127  (class class class)co 6910  Basecbs 16229  lecple 16319  joincjn 17304  meetcmee 17305  Latclat 17405  Atomscatm 35337  AtLatcal 35338  HLchlt 35424  LLinesclln 35565  LPlanesclpl 35566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-proset 17288  df-poset 17306  df-plt 17318  df-lub 17334  df-glb 17335  df-join 17336  df-meet 17337  df-p0 17399  df-lat 17406  df-clat 17468  df-oposet 35250  df-ol 35252  df-oml 35253  df-covers 35340  df-ats 35341  df-atl 35372  df-cvlat 35396  df-hlat 35425  df-llines 35572  df-lplanes 35573  df-lvols 35574
This theorem is referenced by:  dalem58  35804  dalem60  35806
  Copyright terms: Public domain W3C validator