Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem57 Structured version   Visualization version   GIF version

Theorem dalem57 39723
Description: Lemma for dath 39730. Axis of perspectivity point 𝐷 is on the auxiliary line 𝐵. (Contributed by NM, 9-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalem57.m = (meet‘𝐾)
dalem57.o 𝑂 = (LPlanes‘𝐾)
dalem57.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem57.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem57.d 𝐷 = ((𝑃 𝑄) (𝑆 𝑇))
dalem57.g 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
dalem57.h 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
dalem57.i 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
dalem57.b1 𝐵 = (((𝐺 𝐻) 𝐼) 𝑌)
Assertion
Ref Expression
dalem57 ((𝜑𝑌 = 𝑍𝜓) → 𝐷 𝐵)

Proof of Theorem dalem57
StepHypRef Expression
1 dalem.ph . . . . . . 7 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
2 dalem.l . . . . . . 7 = (le‘𝐾)
3 dalem.j . . . . . . 7 = (join‘𝐾)
4 dalem.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
5 dalem.ps . . . . . . 7 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
6 dalem57.m . . . . . . 7 = (meet‘𝐾)
7 dalem57.o . . . . . . 7 𝑂 = (LPlanes‘𝐾)
8 dalem57.y . . . . . . 7 𝑌 = ((𝑃 𝑄) 𝑅)
9 dalem57.z . . . . . . 7 𝑍 = ((𝑆 𝑇) 𝑈)
10 dalem57.g . . . . . . 7 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
11 dalem57.h . . . . . . 7 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
12 dalem57.i . . . . . . 7 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
13 dalem57.b1 . . . . . . 7 𝐵 = (((𝐺 𝐻) 𝐼) 𝑌)
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13dalem55 39721 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑃 𝑄)) = ((𝐺 𝐻) 𝐵))
151dalemkelat 39618 . . . . . . . 8 (𝜑𝐾 ∈ Lat)
16153ad2ant1 1133 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ Lat)
171dalemkehl 39617 . . . . . . . . 9 (𝜑𝐾 ∈ HL)
18173ad2ant1 1133 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ HL)
191, 2, 3, 4, 5, 6, 7, 8, 9, 10dalem23 39690 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → 𝐺𝐴)
201, 2, 3, 4, 5, 6, 7, 8, 9, 11dalem29 39695 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → 𝐻𝐴)
21 eqid 2729 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
2221, 3, 4hlatjcl 39360 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝐺𝐴𝐻𝐴) → (𝐺 𝐻) ∈ (Base‘𝐾))
2318, 19, 20, 22syl3anc 1373 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → (𝐺 𝐻) ∈ (Base‘𝐾))
241, 3, 4dalempjqeb 39639 . . . . . . . 8 (𝜑 → (𝑃 𝑄) ∈ (Base‘𝐾))
25243ad2ant1 1133 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → (𝑃 𝑄) ∈ (Base‘𝐾))
2621, 2, 6latmle2 18424 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝐺 𝐻) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → ((𝐺 𝐻) (𝑃 𝑄)) (𝑃 𝑄))
2716, 23, 25, 26syl3anc 1373 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑃 𝑄)) (𝑃 𝑄))
2814, 27eqbrtrrd 5131 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐵) (𝑃 𝑄))
291, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13dalem56 39722 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑆 𝑇)) = ((𝐺 𝐻) 𝐵))
301, 3, 4dalemsjteb 39640 . . . . . . . 8 (𝜑 → (𝑆 𝑇) ∈ (Base‘𝐾))
31303ad2ant1 1133 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → (𝑆 𝑇) ∈ (Base‘𝐾))
3221, 2, 6latmle2 18424 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝐺 𝐻) ∈ (Base‘𝐾) ∧ (𝑆 𝑇) ∈ (Base‘𝐾)) → ((𝐺 𝐻) (𝑆 𝑇)) (𝑆 𝑇))
3316, 23, 31, 32syl3anc 1373 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑆 𝑇)) (𝑆 𝑇))
3429, 33eqbrtrrd 5131 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐵) (𝑆 𝑇))
351, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13dalem54 39720 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐵) ∈ 𝐴)
3621, 4atbase 39282 . . . . . . 7 (((𝐺 𝐻) 𝐵) ∈ 𝐴 → ((𝐺 𝐻) 𝐵) ∈ (Base‘𝐾))
3735, 36syl 17 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐵) ∈ (Base‘𝐾))
3821, 2, 6latlem12 18425 . . . . . 6 ((𝐾 ∈ Lat ∧ (((𝐺 𝐻) 𝐵) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝑆 𝑇) ∈ (Base‘𝐾))) → ((((𝐺 𝐻) 𝐵) (𝑃 𝑄) ∧ ((𝐺 𝐻) 𝐵) (𝑆 𝑇)) ↔ ((𝐺 𝐻) 𝐵) ((𝑃 𝑄) (𝑆 𝑇))))
3916, 37, 25, 31, 38syl13anc 1374 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ((((𝐺 𝐻) 𝐵) (𝑃 𝑄) ∧ ((𝐺 𝐻) 𝐵) (𝑆 𝑇)) ↔ ((𝐺 𝐻) 𝐵) ((𝑃 𝑄) (𝑆 𝑇))))
4028, 34, 39mpbi2and 712 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐵) ((𝑃 𝑄) (𝑆 𝑇)))
41 dalem57.d . . . 4 𝐷 = ((𝑃 𝑄) (𝑆 𝑇))
4240, 41breqtrrdi 5149 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐵) 𝐷)
43 hlatl 39353 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
4418, 43syl 17 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ AtLat)
451, 2, 3, 4, 6, 7, 8, 9, 41dalemdea 39656 . . . . 5 (𝜑𝐷𝐴)
46453ad2ant1 1133 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐷𝐴)
472, 4atcmp 39304 . . . 4 ((𝐾 ∈ AtLat ∧ ((𝐺 𝐻) 𝐵) ∈ 𝐴𝐷𝐴) → (((𝐺 𝐻) 𝐵) 𝐷 ↔ ((𝐺 𝐻) 𝐵) = 𝐷))
4844, 35, 46, 47syl3anc 1373 . . 3 ((𝜑𝑌 = 𝑍𝜓) → (((𝐺 𝐻) 𝐵) 𝐷 ↔ ((𝐺 𝐻) 𝐵) = 𝐷))
4942, 48mpbid 232 . 2 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐵) = 𝐷)
50 eqid 2729 . . . . 5 (LLines‘𝐾) = (LLines‘𝐾)
511, 2, 3, 4, 5, 6, 50, 7, 8, 9, 10, 11, 12, 13dalem53 39719 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐵 ∈ (LLines‘𝐾))
5221, 50llnbase 39503 . . . 4 (𝐵 ∈ (LLines‘𝐾) → 𝐵 ∈ (Base‘𝐾))
5351, 52syl 17 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐵 ∈ (Base‘𝐾))
5421, 2, 6latmle2 18424 . . 3 ((𝐾 ∈ Lat ∧ (𝐺 𝐻) ∈ (Base‘𝐾) ∧ 𝐵 ∈ (Base‘𝐾)) → ((𝐺 𝐻) 𝐵) 𝐵)
5516, 23, 53, 54syl3anc 1373 . 2 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐵) 𝐵)
5649, 55eqbrtrrd 5131 1 ((𝜑𝑌 = 𝑍𝜓) → 𝐷 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  joincjn 18272  meetcmee 18273  Latclat 18390  Atomscatm 39256  AtLatcal 39257  HLchlt 39343  LLinesclln 39485  LPlanesclpl 39486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-llines 39492  df-lplanes 39493  df-lvols 39494
This theorem is referenced by:  dalem58  39724  dalem60  39726
  Copyright terms: Public domain W3C validator