Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem57 Structured version   Visualization version   GIF version

Theorem dalem57 39748
Description: Lemma for dath 39755. Axis of perspectivity point 𝐷 is on the auxiliary line 𝐵. (Contributed by NM, 9-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalem57.m = (meet‘𝐾)
dalem57.o 𝑂 = (LPlanes‘𝐾)
dalem57.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem57.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem57.d 𝐷 = ((𝑃 𝑄) (𝑆 𝑇))
dalem57.g 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
dalem57.h 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
dalem57.i 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
dalem57.b1 𝐵 = (((𝐺 𝐻) 𝐼) 𝑌)
Assertion
Ref Expression
dalem57 ((𝜑𝑌 = 𝑍𝜓) → 𝐷 𝐵)

Proof of Theorem dalem57
StepHypRef Expression
1 dalem.ph . . . . . . 7 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
2 dalem.l . . . . . . 7 = (le‘𝐾)
3 dalem.j . . . . . . 7 = (join‘𝐾)
4 dalem.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
5 dalem.ps . . . . . . 7 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
6 dalem57.m . . . . . . 7 = (meet‘𝐾)
7 dalem57.o . . . . . . 7 𝑂 = (LPlanes‘𝐾)
8 dalem57.y . . . . . . 7 𝑌 = ((𝑃 𝑄) 𝑅)
9 dalem57.z . . . . . . 7 𝑍 = ((𝑆 𝑇) 𝑈)
10 dalem57.g . . . . . . 7 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
11 dalem57.h . . . . . . 7 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
12 dalem57.i . . . . . . 7 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
13 dalem57.b1 . . . . . . 7 𝐵 = (((𝐺 𝐻) 𝐼) 𝑌)
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13dalem55 39746 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑃 𝑄)) = ((𝐺 𝐻) 𝐵))
151dalemkelat 39643 . . . . . . . 8 (𝜑𝐾 ∈ Lat)
16153ad2ant1 1133 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ Lat)
171dalemkehl 39642 . . . . . . . . 9 (𝜑𝐾 ∈ HL)
18173ad2ant1 1133 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ HL)
191, 2, 3, 4, 5, 6, 7, 8, 9, 10dalem23 39715 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → 𝐺𝐴)
201, 2, 3, 4, 5, 6, 7, 8, 9, 11dalem29 39720 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → 𝐻𝐴)
21 eqid 2735 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
2221, 3, 4hlatjcl 39385 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝐺𝐴𝐻𝐴) → (𝐺 𝐻) ∈ (Base‘𝐾))
2318, 19, 20, 22syl3anc 1373 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → (𝐺 𝐻) ∈ (Base‘𝐾))
241, 3, 4dalempjqeb 39664 . . . . . . . 8 (𝜑 → (𝑃 𝑄) ∈ (Base‘𝐾))
25243ad2ant1 1133 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → (𝑃 𝑄) ∈ (Base‘𝐾))
2621, 2, 6latmle2 18475 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝐺 𝐻) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → ((𝐺 𝐻) (𝑃 𝑄)) (𝑃 𝑄))
2716, 23, 25, 26syl3anc 1373 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑃 𝑄)) (𝑃 𝑄))
2814, 27eqbrtrrd 5143 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐵) (𝑃 𝑄))
291, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13dalem56 39747 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑆 𝑇)) = ((𝐺 𝐻) 𝐵))
301, 3, 4dalemsjteb 39665 . . . . . . . 8 (𝜑 → (𝑆 𝑇) ∈ (Base‘𝐾))
31303ad2ant1 1133 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → (𝑆 𝑇) ∈ (Base‘𝐾))
3221, 2, 6latmle2 18475 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝐺 𝐻) ∈ (Base‘𝐾) ∧ (𝑆 𝑇) ∈ (Base‘𝐾)) → ((𝐺 𝐻) (𝑆 𝑇)) (𝑆 𝑇))
3316, 23, 31, 32syl3anc 1373 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑆 𝑇)) (𝑆 𝑇))
3429, 33eqbrtrrd 5143 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐵) (𝑆 𝑇))
351, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13dalem54 39745 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐵) ∈ 𝐴)
3621, 4atbase 39307 . . . . . . 7 (((𝐺 𝐻) 𝐵) ∈ 𝐴 → ((𝐺 𝐻) 𝐵) ∈ (Base‘𝐾))
3735, 36syl 17 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐵) ∈ (Base‘𝐾))
3821, 2, 6latlem12 18476 . . . . . 6 ((𝐾 ∈ Lat ∧ (((𝐺 𝐻) 𝐵) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝑆 𝑇) ∈ (Base‘𝐾))) → ((((𝐺 𝐻) 𝐵) (𝑃 𝑄) ∧ ((𝐺 𝐻) 𝐵) (𝑆 𝑇)) ↔ ((𝐺 𝐻) 𝐵) ((𝑃 𝑄) (𝑆 𝑇))))
3916, 37, 25, 31, 38syl13anc 1374 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ((((𝐺 𝐻) 𝐵) (𝑃 𝑄) ∧ ((𝐺 𝐻) 𝐵) (𝑆 𝑇)) ↔ ((𝐺 𝐻) 𝐵) ((𝑃 𝑄) (𝑆 𝑇))))
4028, 34, 39mpbi2and 712 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐵) ((𝑃 𝑄) (𝑆 𝑇)))
41 dalem57.d . . . 4 𝐷 = ((𝑃 𝑄) (𝑆 𝑇))
4240, 41breqtrrdi 5161 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐵) 𝐷)
43 hlatl 39378 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
4418, 43syl 17 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ AtLat)
451, 2, 3, 4, 6, 7, 8, 9, 41dalemdea 39681 . . . . 5 (𝜑𝐷𝐴)
46453ad2ant1 1133 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐷𝐴)
472, 4atcmp 39329 . . . 4 ((𝐾 ∈ AtLat ∧ ((𝐺 𝐻) 𝐵) ∈ 𝐴𝐷𝐴) → (((𝐺 𝐻) 𝐵) 𝐷 ↔ ((𝐺 𝐻) 𝐵) = 𝐷))
4844, 35, 46, 47syl3anc 1373 . . 3 ((𝜑𝑌 = 𝑍𝜓) → (((𝐺 𝐻) 𝐵) 𝐷 ↔ ((𝐺 𝐻) 𝐵) = 𝐷))
4942, 48mpbid 232 . 2 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐵) = 𝐷)
50 eqid 2735 . . . . 5 (LLines‘𝐾) = (LLines‘𝐾)
511, 2, 3, 4, 5, 6, 50, 7, 8, 9, 10, 11, 12, 13dalem53 39744 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐵 ∈ (LLines‘𝐾))
5221, 50llnbase 39528 . . . 4 (𝐵 ∈ (LLines‘𝐾) → 𝐵 ∈ (Base‘𝐾))
5351, 52syl 17 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐵 ∈ (Base‘𝐾))
5421, 2, 6latmle2 18475 . . 3 ((𝐾 ∈ Lat ∧ (𝐺 𝐻) ∈ (Base‘𝐾) ∧ 𝐵 ∈ (Base‘𝐾)) → ((𝐺 𝐻) 𝐵) 𝐵)
5516, 23, 53, 54syl3anc 1373 . 2 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐵) 𝐵)
5649, 55eqbrtrrd 5143 1 ((𝜑𝑌 = 𝑍𝜓) → 𝐷 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932   class class class wbr 5119  cfv 6531  (class class class)co 7405  Basecbs 17228  lecple 17278  joincjn 18323  meetcmee 18324  Latclat 18441  Atomscatm 39281  AtLatcal 39282  HLchlt 39368  LLinesclln 39510  LPlanesclpl 39511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-proset 18306  df-poset 18325  df-plt 18340  df-lub 18356  df-glb 18357  df-join 18358  df-meet 18359  df-p0 18435  df-lat 18442  df-clat 18509  df-oposet 39194  df-ol 39196  df-oml 39197  df-covers 39284  df-ats 39285  df-atl 39316  df-cvlat 39340  df-hlat 39369  df-llines 39517  df-lplanes 39518  df-lvols 39519
This theorem is referenced by:  dalem58  39749  dalem60  39751
  Copyright terms: Public domain W3C validator