Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem57 Structured version   Visualization version   GIF version

Theorem dalem57 38588
Description: Lemma for dath 38595. Axis of perspectivity point 𝐷 is on the auxiliary line 𝐡. (Contributed by NM, 9-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (πœ‘ ↔ (((𝐾 ∈ HL ∧ 𝐢 ∈ (Baseβ€˜πΎ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (π‘Œ ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((Β¬ 𝐢 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝐢 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝐢 ≀ (𝑅 ∨ 𝑃)) ∧ (Β¬ 𝐢 ≀ (𝑆 ∨ 𝑇) ∧ Β¬ 𝐢 ≀ (𝑇 ∨ π‘ˆ) ∧ Β¬ 𝐢 ≀ (π‘ˆ ∨ 𝑆)) ∧ (𝐢 ≀ (𝑃 ∨ 𝑆) ∧ 𝐢 ≀ (𝑄 ∨ 𝑇) ∧ 𝐢 ≀ (𝑅 ∨ π‘ˆ)))))
dalem.l ≀ = (leβ€˜πΎ)
dalem.j ∨ = (joinβ€˜πΎ)
dalem.a 𝐴 = (Atomsβ€˜πΎ)
dalem.ps (πœ“ ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ Β¬ 𝑐 ≀ π‘Œ ∧ (𝑑 β‰  𝑐 ∧ Β¬ 𝑑 ≀ π‘Œ ∧ 𝐢 ≀ (𝑐 ∨ 𝑑))))
dalem57.m ∧ = (meetβ€˜πΎ)
dalem57.o 𝑂 = (LPlanesβ€˜πΎ)
dalem57.y π‘Œ = ((𝑃 ∨ 𝑄) ∨ 𝑅)
dalem57.z 𝑍 = ((𝑆 ∨ 𝑇) ∨ π‘ˆ)
dalem57.d 𝐷 = ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇))
dalem57.g 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆))
dalem57.h 𝐻 = ((𝑐 ∨ 𝑄) ∧ (𝑑 ∨ 𝑇))
dalem57.i 𝐼 = ((𝑐 ∨ 𝑅) ∧ (𝑑 ∨ π‘ˆ))
dalem57.b1 𝐡 = (((𝐺 ∨ 𝐻) ∨ 𝐼) ∧ π‘Œ)
Assertion
Ref Expression
dalem57 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ 𝐷 ≀ 𝐡)

Proof of Theorem dalem57
StepHypRef Expression
1 dalem.ph . . . . . . 7 (πœ‘ ↔ (((𝐾 ∈ HL ∧ 𝐢 ∈ (Baseβ€˜πΎ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (π‘Œ ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((Β¬ 𝐢 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝐢 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝐢 ≀ (𝑅 ∨ 𝑃)) ∧ (Β¬ 𝐢 ≀ (𝑆 ∨ 𝑇) ∧ Β¬ 𝐢 ≀ (𝑇 ∨ π‘ˆ) ∧ Β¬ 𝐢 ≀ (π‘ˆ ∨ 𝑆)) ∧ (𝐢 ≀ (𝑃 ∨ 𝑆) ∧ 𝐢 ≀ (𝑄 ∨ 𝑇) ∧ 𝐢 ≀ (𝑅 ∨ π‘ˆ)))))
2 dalem.l . . . . . . 7 ≀ = (leβ€˜πΎ)
3 dalem.j . . . . . . 7 ∨ = (joinβ€˜πΎ)
4 dalem.a . . . . . . 7 𝐴 = (Atomsβ€˜πΎ)
5 dalem.ps . . . . . . 7 (πœ“ ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ Β¬ 𝑐 ≀ π‘Œ ∧ (𝑑 β‰  𝑐 ∧ Β¬ 𝑑 ≀ π‘Œ ∧ 𝐢 ≀ (𝑐 ∨ 𝑑))))
6 dalem57.m . . . . . . 7 ∧ = (meetβ€˜πΎ)
7 dalem57.o . . . . . . 7 𝑂 = (LPlanesβ€˜πΎ)
8 dalem57.y . . . . . . 7 π‘Œ = ((𝑃 ∨ 𝑄) ∨ 𝑅)
9 dalem57.z . . . . . . 7 𝑍 = ((𝑆 ∨ 𝑇) ∨ π‘ˆ)
10 dalem57.g . . . . . . 7 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆))
11 dalem57.h . . . . . . 7 𝐻 = ((𝑐 ∨ 𝑄) ∧ (𝑑 ∨ 𝑇))
12 dalem57.i . . . . . . 7 𝐼 = ((𝑐 ∨ 𝑅) ∧ (𝑑 ∨ π‘ˆ))
13 dalem57.b1 . . . . . . 7 𝐡 = (((𝐺 ∨ 𝐻) ∨ 𝐼) ∧ π‘Œ)
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13dalem55 38586 . . . . . 6 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ ((𝐺 ∨ 𝐻) ∧ (𝑃 ∨ 𝑄)) = ((𝐺 ∨ 𝐻) ∧ 𝐡))
151dalemkelat 38483 . . . . . . . 8 (πœ‘ β†’ 𝐾 ∈ Lat)
16153ad2ant1 1133 . . . . . . 7 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ 𝐾 ∈ Lat)
171dalemkehl 38482 . . . . . . . . 9 (πœ‘ β†’ 𝐾 ∈ HL)
18173ad2ant1 1133 . . . . . . . 8 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ 𝐾 ∈ HL)
191, 2, 3, 4, 5, 6, 7, 8, 9, 10dalem23 38555 . . . . . . . 8 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ 𝐺 ∈ 𝐴)
201, 2, 3, 4, 5, 6, 7, 8, 9, 11dalem29 38560 . . . . . . . 8 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ 𝐻 ∈ 𝐴)
21 eqid 2732 . . . . . . . . 9 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
2221, 3, 4hlatjcl 38225 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐴) β†’ (𝐺 ∨ 𝐻) ∈ (Baseβ€˜πΎ))
2318, 19, 20, 22syl3anc 1371 . . . . . . 7 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ (𝐺 ∨ 𝐻) ∈ (Baseβ€˜πΎ))
241, 3, 4dalempjqeb 38504 . . . . . . . 8 (πœ‘ β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
25243ad2ant1 1133 . . . . . . 7 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
2621, 2, 6latmle2 18414 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝐺 ∨ 𝐻) ∈ (Baseβ€˜πΎ) ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ)) β†’ ((𝐺 ∨ 𝐻) ∧ (𝑃 ∨ 𝑄)) ≀ (𝑃 ∨ 𝑄))
2716, 23, 25, 26syl3anc 1371 . . . . . 6 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ ((𝐺 ∨ 𝐻) ∧ (𝑃 ∨ 𝑄)) ≀ (𝑃 ∨ 𝑄))
2814, 27eqbrtrrd 5171 . . . . 5 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ ((𝐺 ∨ 𝐻) ∧ 𝐡) ≀ (𝑃 ∨ 𝑄))
291, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13dalem56 38587 . . . . . 6 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ ((𝐺 ∨ 𝐻) ∧ (𝑆 ∨ 𝑇)) = ((𝐺 ∨ 𝐻) ∧ 𝐡))
301, 3, 4dalemsjteb 38505 . . . . . . . 8 (πœ‘ β†’ (𝑆 ∨ 𝑇) ∈ (Baseβ€˜πΎ))
31303ad2ant1 1133 . . . . . . 7 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ (𝑆 ∨ 𝑇) ∈ (Baseβ€˜πΎ))
3221, 2, 6latmle2 18414 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝐺 ∨ 𝐻) ∈ (Baseβ€˜πΎ) ∧ (𝑆 ∨ 𝑇) ∈ (Baseβ€˜πΎ)) β†’ ((𝐺 ∨ 𝐻) ∧ (𝑆 ∨ 𝑇)) ≀ (𝑆 ∨ 𝑇))
3316, 23, 31, 32syl3anc 1371 . . . . . 6 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ ((𝐺 ∨ 𝐻) ∧ (𝑆 ∨ 𝑇)) ≀ (𝑆 ∨ 𝑇))
3429, 33eqbrtrrd 5171 . . . . 5 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ ((𝐺 ∨ 𝐻) ∧ 𝐡) ≀ (𝑆 ∨ 𝑇))
351, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13dalem54 38585 . . . . . . 7 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ ((𝐺 ∨ 𝐻) ∧ 𝐡) ∈ 𝐴)
3621, 4atbase 38147 . . . . . . 7 (((𝐺 ∨ 𝐻) ∧ 𝐡) ∈ 𝐴 β†’ ((𝐺 ∨ 𝐻) ∧ 𝐡) ∈ (Baseβ€˜πΎ))
3735, 36syl 17 . . . . . 6 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ ((𝐺 ∨ 𝐻) ∧ 𝐡) ∈ (Baseβ€˜πΎ))
3821, 2, 6latlem12 18415 . . . . . 6 ((𝐾 ∈ Lat ∧ (((𝐺 ∨ 𝐻) ∧ 𝐡) ∈ (Baseβ€˜πΎ) ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ (𝑆 ∨ 𝑇) ∈ (Baseβ€˜πΎ))) β†’ ((((𝐺 ∨ 𝐻) ∧ 𝐡) ≀ (𝑃 ∨ 𝑄) ∧ ((𝐺 ∨ 𝐻) ∧ 𝐡) ≀ (𝑆 ∨ 𝑇)) ↔ ((𝐺 ∨ 𝐻) ∧ 𝐡) ≀ ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇))))
3916, 37, 25, 31, 38syl13anc 1372 . . . . 5 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ ((((𝐺 ∨ 𝐻) ∧ 𝐡) ≀ (𝑃 ∨ 𝑄) ∧ ((𝐺 ∨ 𝐻) ∧ 𝐡) ≀ (𝑆 ∨ 𝑇)) ↔ ((𝐺 ∨ 𝐻) ∧ 𝐡) ≀ ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇))))
4028, 34, 39mpbi2and 710 . . . 4 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ ((𝐺 ∨ 𝐻) ∧ 𝐡) ≀ ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)))
41 dalem57.d . . . 4 𝐷 = ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇))
4240, 41breqtrrdi 5189 . . 3 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ ((𝐺 ∨ 𝐻) ∧ 𝐡) ≀ 𝐷)
43 hlatl 38218 . . . . 5 (𝐾 ∈ HL β†’ 𝐾 ∈ AtLat)
4418, 43syl 17 . . . 4 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ 𝐾 ∈ AtLat)
451, 2, 3, 4, 6, 7, 8, 9, 41dalemdea 38521 . . . . 5 (πœ‘ β†’ 𝐷 ∈ 𝐴)
46453ad2ant1 1133 . . . 4 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ 𝐷 ∈ 𝐴)
472, 4atcmp 38169 . . . 4 ((𝐾 ∈ AtLat ∧ ((𝐺 ∨ 𝐻) ∧ 𝐡) ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) β†’ (((𝐺 ∨ 𝐻) ∧ 𝐡) ≀ 𝐷 ↔ ((𝐺 ∨ 𝐻) ∧ 𝐡) = 𝐷))
4844, 35, 46, 47syl3anc 1371 . . 3 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ (((𝐺 ∨ 𝐻) ∧ 𝐡) ≀ 𝐷 ↔ ((𝐺 ∨ 𝐻) ∧ 𝐡) = 𝐷))
4942, 48mpbid 231 . 2 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ ((𝐺 ∨ 𝐻) ∧ 𝐡) = 𝐷)
50 eqid 2732 . . . . 5 (LLinesβ€˜πΎ) = (LLinesβ€˜πΎ)
511, 2, 3, 4, 5, 6, 50, 7, 8, 9, 10, 11, 12, 13dalem53 38584 . . . 4 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ 𝐡 ∈ (LLinesβ€˜πΎ))
5221, 50llnbase 38368 . . . 4 (𝐡 ∈ (LLinesβ€˜πΎ) β†’ 𝐡 ∈ (Baseβ€˜πΎ))
5351, 52syl 17 . . 3 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ 𝐡 ∈ (Baseβ€˜πΎ))
5421, 2, 6latmle2 18414 . . 3 ((𝐾 ∈ Lat ∧ (𝐺 ∨ 𝐻) ∈ (Baseβ€˜πΎ) ∧ 𝐡 ∈ (Baseβ€˜πΎ)) β†’ ((𝐺 ∨ 𝐻) ∧ 𝐡) ≀ 𝐡)
5516, 23, 53, 54syl3anc 1371 . 2 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ ((𝐺 ∨ 𝐻) ∧ 𝐡) ≀ 𝐡)
5649, 55eqbrtrrd 5171 1 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ 𝐷 ≀ 𝐡)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940   class class class wbr 5147  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  lecple 17200  joincjn 18260  meetcmee 18261  Latclat 18380  Atomscatm 38121  AtLatcal 38122  HLchlt 38208  LLinesclln 38350  LPlanesclpl 38351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-lat 18381  df-clat 18448  df-oposet 38034  df-ol 38036  df-oml 38037  df-covers 38124  df-ats 38125  df-atl 38156  df-cvlat 38180  df-hlat 38209  df-llines 38357  df-lplanes 38358  df-lvols 38359
This theorem is referenced by:  dalem58  38589  dalem60  38591
  Copyright terms: Public domain W3C validator