Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem55 Structured version   Visualization version   GIF version

Theorem dalem55 39232
Description: Lemma for dath 39241. Lines 𝐺𝐻 and 𝑃𝑄 intersect at the auxiliary line 𝐵 (later shown to be an axis of perspectivity; see dalem60 39237). (Contributed by NM, 8-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalem54.m = (meet‘𝐾)
dalem54.o 𝑂 = (LPlanes‘𝐾)
dalem54.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem54.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem54.g 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
dalem54.h 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
dalem54.i 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
dalem54.b1 𝐵 = (((𝐺 𝐻) 𝐼) 𝑌)
Assertion
Ref Expression
dalem55 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑃 𝑄)) = ((𝐺 𝐻) 𝐵))

Proof of Theorem dalem55
StepHypRef Expression
1 dalem.ph . . . . . 6 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
21dalemkelat 39129 . . . . 5 (𝜑𝐾 ∈ Lat)
323ad2ant1 1130 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ Lat)
41dalemkehl 39128 . . . . . 6 (𝜑𝐾 ∈ HL)
543ad2ant1 1130 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ HL)
6 dalem.l . . . . . 6 = (le‘𝐾)
7 dalem.j . . . . . 6 = (join‘𝐾)
8 dalem.a . . . . . 6 𝐴 = (Atoms‘𝐾)
9 dalem.ps . . . . . 6 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
10 dalem54.m . . . . . 6 = (meet‘𝐾)
11 dalem54.o . . . . . 6 𝑂 = (LPlanes‘𝐾)
12 dalem54.y . . . . . 6 𝑌 = ((𝑃 𝑄) 𝑅)
13 dalem54.z . . . . . 6 𝑍 = ((𝑆 𝑇) 𝑈)
14 dalem54.g . . . . . 6 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
151, 6, 7, 8, 9, 10, 11, 12, 13, 14dalem23 39201 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝐺𝐴)
16 dalem54.h . . . . . 6 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
171, 6, 7, 8, 9, 10, 11, 12, 13, 16dalem29 39206 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝐻𝐴)
18 eqid 2728 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
1918, 7, 8hlatjcl 38871 . . . . 5 ((𝐾 ∈ HL ∧ 𝐺𝐴𝐻𝐴) → (𝐺 𝐻) ∈ (Base‘𝐾))
205, 15, 17, 19syl3anc 1368 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (𝐺 𝐻) ∈ (Base‘𝐾))
211, 7, 8dalempjqeb 39150 . . . . 5 (𝜑 → (𝑃 𝑄) ∈ (Base‘𝐾))
22213ad2ant1 1130 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (𝑃 𝑄) ∈ (Base‘𝐾))
2318, 6, 10latmle1 18463 . . . 4 ((𝐾 ∈ Lat ∧ (𝐺 𝐻) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → ((𝐺 𝐻) (𝑃 𝑄)) (𝐺 𝐻))
243, 20, 22, 23syl3anc 1368 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑃 𝑄)) (𝐺 𝐻))
25 dalem54.i . . . . . . . 8 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
261, 6, 7, 8, 9, 10, 11, 12, 13, 25dalem34 39211 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝐼𝐴)
2718, 8atbase 38793 . . . . . . 7 (𝐼𝐴𝐼 ∈ (Base‘𝐾))
2826, 27syl 17 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝐼 ∈ (Base‘𝐾))
2918, 6, 7latlej1 18447 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐺 𝐻) ∈ (Base‘𝐾) ∧ 𝐼 ∈ (Base‘𝐾)) → (𝐺 𝐻) ((𝐺 𝐻) 𝐼))
303, 20, 28, 29syl3anc 1368 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → (𝐺 𝐻) ((𝐺 𝐻) 𝐼))
311, 8dalemreb 39146 . . . . . . . 8 (𝜑𝑅 ∈ (Base‘𝐾))
3218, 6, 7latlej1 18447 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → (𝑃 𝑄) ((𝑃 𝑄) 𝑅))
332, 21, 31, 32syl3anc 1368 . . . . . . 7 (𝜑 → (𝑃 𝑄) ((𝑃 𝑄) 𝑅))
3433, 12breqtrrdi 5194 . . . . . 6 (𝜑 → (𝑃 𝑄) 𝑌)
35343ad2ant1 1130 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → (𝑃 𝑄) 𝑌)
361, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 25dalem42 39219 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐼) ∈ 𝑂)
3718, 11lplnbase 39039 . . . . . . 7 (((𝐺 𝐻) 𝐼) ∈ 𝑂 → ((𝐺 𝐻) 𝐼) ∈ (Base‘𝐾))
3836, 37syl 17 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐼) ∈ (Base‘𝐾))
391, 11dalemyeb 39154 . . . . . . 7 (𝜑𝑌 ∈ (Base‘𝐾))
40393ad2ant1 1130 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝑌 ∈ (Base‘𝐾))
4118, 6, 10latmlem12 18470 . . . . . 6 ((𝐾 ∈ Lat ∧ ((𝐺 𝐻) ∈ (Base‘𝐾) ∧ ((𝐺 𝐻) 𝐼) ∈ (Base‘𝐾)) ∧ ((𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾))) → (((𝐺 𝐻) ((𝐺 𝐻) 𝐼) ∧ (𝑃 𝑄) 𝑌) → ((𝐺 𝐻) (𝑃 𝑄)) (((𝐺 𝐻) 𝐼) 𝑌)))
423, 20, 38, 22, 40, 41syl122anc 1376 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → (((𝐺 𝐻) ((𝐺 𝐻) 𝐼) ∧ (𝑃 𝑄) 𝑌) → ((𝐺 𝐻) (𝑃 𝑄)) (((𝐺 𝐻) 𝐼) 𝑌)))
4330, 35, 42mp2and 697 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑃 𝑄)) (((𝐺 𝐻) 𝐼) 𝑌))
44 dalem54.b1 . . . 4 𝐵 = (((𝐺 𝐻) 𝐼) 𝑌)
4543, 44breqtrrdi 5194 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑃 𝑄)) 𝐵)
4618, 10latmcl 18439 . . . . 5 ((𝐾 ∈ Lat ∧ (𝐺 𝐻) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → ((𝐺 𝐻) (𝑃 𝑄)) ∈ (Base‘𝐾))
473, 20, 22, 46syl3anc 1368 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑃 𝑄)) ∈ (Base‘𝐾))
48 eqid 2728 . . . . . 6 (LLines‘𝐾) = (LLines‘𝐾)
491, 6, 7, 8, 9, 10, 48, 11, 12, 13, 14, 16, 25, 44dalem53 39230 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝐵 ∈ (LLines‘𝐾))
5018, 48llnbase 39014 . . . . 5 (𝐵 ∈ (LLines‘𝐾) → 𝐵 ∈ (Base‘𝐾))
5149, 50syl 17 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐵 ∈ (Base‘𝐾))
5218, 6, 10latlem12 18465 . . . 4 ((𝐾 ∈ Lat ∧ (((𝐺 𝐻) (𝑃 𝑄)) ∈ (Base‘𝐾) ∧ (𝐺 𝐻) ∈ (Base‘𝐾) ∧ 𝐵 ∈ (Base‘𝐾))) → ((((𝐺 𝐻) (𝑃 𝑄)) (𝐺 𝐻) ∧ ((𝐺 𝐻) (𝑃 𝑄)) 𝐵) ↔ ((𝐺 𝐻) (𝑃 𝑄)) ((𝐺 𝐻) 𝐵)))
533, 47, 20, 51, 52syl13anc 1369 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ((((𝐺 𝐻) (𝑃 𝑄)) (𝐺 𝐻) ∧ ((𝐺 𝐻) (𝑃 𝑄)) 𝐵) ↔ ((𝐺 𝐻) (𝑃 𝑄)) ((𝐺 𝐻) 𝐵)))
5424, 45, 53mpbi2and 710 . 2 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑃 𝑄)) ((𝐺 𝐻) 𝐵))
55 hlatl 38864 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
565, 55syl 17 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ AtLat)
571, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 25dalem52 39229 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑃 𝑄)) ∈ 𝐴)
581, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 25, 44dalem54 39231 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐵) ∈ 𝐴)
596, 8atcmp 38815 . . 3 ((𝐾 ∈ AtLat ∧ ((𝐺 𝐻) (𝑃 𝑄)) ∈ 𝐴 ∧ ((𝐺 𝐻) 𝐵) ∈ 𝐴) → (((𝐺 𝐻) (𝑃 𝑄)) ((𝐺 𝐻) 𝐵) ↔ ((𝐺 𝐻) (𝑃 𝑄)) = ((𝐺 𝐻) 𝐵)))
6056, 57, 58, 59syl3anc 1368 . 2 ((𝜑𝑌 = 𝑍𝜓) → (((𝐺 𝐻) (𝑃 𝑄)) ((𝐺 𝐻) 𝐵) ↔ ((𝐺 𝐻) (𝑃 𝑄)) = ((𝐺 𝐻) 𝐵)))
6154, 60mpbid 231 1 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑃 𝑄)) = ((𝐺 𝐻) 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2937   class class class wbr 5152  cfv 6553  (class class class)co 7426  Basecbs 17187  lecple 17247  joincjn 18310  meetcmee 18311  Latclat 18430  Atomscatm 38767  AtLatcal 38768  HLchlt 38854  LLinesclln 38996  LPlanesclpl 38997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-proset 18294  df-poset 18312  df-plt 18329  df-lub 18345  df-glb 18346  df-join 18347  df-meet 18348  df-p0 18424  df-lat 18431  df-clat 18498  df-oposet 38680  df-ol 38682  df-oml 38683  df-covers 38770  df-ats 38771  df-atl 38802  df-cvlat 38826  df-hlat 38855  df-llines 39003  df-lplanes 39004  df-lvols 39005
This theorem is referenced by:  dalem56  39233  dalem57  39234
  Copyright terms: Public domain W3C validator