Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem55 Structured version   Visualization version   GIF version

Theorem dalem55 39721
Description: Lemma for dath 39730. Lines 𝐺𝐻 and 𝑃𝑄 intersect at the auxiliary line 𝐵 (later shown to be an axis of perspectivity; see dalem60 39726). (Contributed by NM, 8-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalem54.m = (meet‘𝐾)
dalem54.o 𝑂 = (LPlanes‘𝐾)
dalem54.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem54.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem54.g 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
dalem54.h 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
dalem54.i 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
dalem54.b1 𝐵 = (((𝐺 𝐻) 𝐼) 𝑌)
Assertion
Ref Expression
dalem55 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑃 𝑄)) = ((𝐺 𝐻) 𝐵))

Proof of Theorem dalem55
StepHypRef Expression
1 dalem.ph . . . . . 6 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
21dalemkelat 39618 . . . . 5 (𝜑𝐾 ∈ Lat)
323ad2ant1 1133 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ Lat)
41dalemkehl 39617 . . . . . 6 (𝜑𝐾 ∈ HL)
543ad2ant1 1133 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ HL)
6 dalem.l . . . . . 6 = (le‘𝐾)
7 dalem.j . . . . . 6 = (join‘𝐾)
8 dalem.a . . . . . 6 𝐴 = (Atoms‘𝐾)
9 dalem.ps . . . . . 6 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
10 dalem54.m . . . . . 6 = (meet‘𝐾)
11 dalem54.o . . . . . 6 𝑂 = (LPlanes‘𝐾)
12 dalem54.y . . . . . 6 𝑌 = ((𝑃 𝑄) 𝑅)
13 dalem54.z . . . . . 6 𝑍 = ((𝑆 𝑇) 𝑈)
14 dalem54.g . . . . . 6 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
151, 6, 7, 8, 9, 10, 11, 12, 13, 14dalem23 39690 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝐺𝐴)
16 dalem54.h . . . . . 6 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
171, 6, 7, 8, 9, 10, 11, 12, 13, 16dalem29 39695 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝐻𝐴)
18 eqid 2729 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
1918, 7, 8hlatjcl 39360 . . . . 5 ((𝐾 ∈ HL ∧ 𝐺𝐴𝐻𝐴) → (𝐺 𝐻) ∈ (Base‘𝐾))
205, 15, 17, 19syl3anc 1373 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (𝐺 𝐻) ∈ (Base‘𝐾))
211, 7, 8dalempjqeb 39639 . . . . 5 (𝜑 → (𝑃 𝑄) ∈ (Base‘𝐾))
22213ad2ant1 1133 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (𝑃 𝑄) ∈ (Base‘𝐾))
2318, 6, 10latmle1 18423 . . . 4 ((𝐾 ∈ Lat ∧ (𝐺 𝐻) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → ((𝐺 𝐻) (𝑃 𝑄)) (𝐺 𝐻))
243, 20, 22, 23syl3anc 1373 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑃 𝑄)) (𝐺 𝐻))
25 dalem54.i . . . . . . . 8 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
261, 6, 7, 8, 9, 10, 11, 12, 13, 25dalem34 39700 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝐼𝐴)
2718, 8atbase 39282 . . . . . . 7 (𝐼𝐴𝐼 ∈ (Base‘𝐾))
2826, 27syl 17 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝐼 ∈ (Base‘𝐾))
2918, 6, 7latlej1 18407 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐺 𝐻) ∈ (Base‘𝐾) ∧ 𝐼 ∈ (Base‘𝐾)) → (𝐺 𝐻) ((𝐺 𝐻) 𝐼))
303, 20, 28, 29syl3anc 1373 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → (𝐺 𝐻) ((𝐺 𝐻) 𝐼))
311, 8dalemreb 39635 . . . . . . . 8 (𝜑𝑅 ∈ (Base‘𝐾))
3218, 6, 7latlej1 18407 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → (𝑃 𝑄) ((𝑃 𝑄) 𝑅))
332, 21, 31, 32syl3anc 1373 . . . . . . 7 (𝜑 → (𝑃 𝑄) ((𝑃 𝑄) 𝑅))
3433, 12breqtrrdi 5149 . . . . . 6 (𝜑 → (𝑃 𝑄) 𝑌)
35343ad2ant1 1133 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → (𝑃 𝑄) 𝑌)
361, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 25dalem42 39708 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐼) ∈ 𝑂)
3718, 11lplnbase 39528 . . . . . . 7 (((𝐺 𝐻) 𝐼) ∈ 𝑂 → ((𝐺 𝐻) 𝐼) ∈ (Base‘𝐾))
3836, 37syl 17 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐼) ∈ (Base‘𝐾))
391, 11dalemyeb 39643 . . . . . . 7 (𝜑𝑌 ∈ (Base‘𝐾))
40393ad2ant1 1133 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝑌 ∈ (Base‘𝐾))
4118, 6, 10latmlem12 18430 . . . . . 6 ((𝐾 ∈ Lat ∧ ((𝐺 𝐻) ∈ (Base‘𝐾) ∧ ((𝐺 𝐻) 𝐼) ∈ (Base‘𝐾)) ∧ ((𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾))) → (((𝐺 𝐻) ((𝐺 𝐻) 𝐼) ∧ (𝑃 𝑄) 𝑌) → ((𝐺 𝐻) (𝑃 𝑄)) (((𝐺 𝐻) 𝐼) 𝑌)))
423, 20, 38, 22, 40, 41syl122anc 1381 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → (((𝐺 𝐻) ((𝐺 𝐻) 𝐼) ∧ (𝑃 𝑄) 𝑌) → ((𝐺 𝐻) (𝑃 𝑄)) (((𝐺 𝐻) 𝐼) 𝑌)))
4330, 35, 42mp2and 699 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑃 𝑄)) (((𝐺 𝐻) 𝐼) 𝑌))
44 dalem54.b1 . . . 4 𝐵 = (((𝐺 𝐻) 𝐼) 𝑌)
4543, 44breqtrrdi 5149 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑃 𝑄)) 𝐵)
4618, 10latmcl 18399 . . . . 5 ((𝐾 ∈ Lat ∧ (𝐺 𝐻) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → ((𝐺 𝐻) (𝑃 𝑄)) ∈ (Base‘𝐾))
473, 20, 22, 46syl3anc 1373 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑃 𝑄)) ∈ (Base‘𝐾))
48 eqid 2729 . . . . . 6 (LLines‘𝐾) = (LLines‘𝐾)
491, 6, 7, 8, 9, 10, 48, 11, 12, 13, 14, 16, 25, 44dalem53 39719 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝐵 ∈ (LLines‘𝐾))
5018, 48llnbase 39503 . . . . 5 (𝐵 ∈ (LLines‘𝐾) → 𝐵 ∈ (Base‘𝐾))
5149, 50syl 17 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐵 ∈ (Base‘𝐾))
5218, 6, 10latlem12 18425 . . . 4 ((𝐾 ∈ Lat ∧ (((𝐺 𝐻) (𝑃 𝑄)) ∈ (Base‘𝐾) ∧ (𝐺 𝐻) ∈ (Base‘𝐾) ∧ 𝐵 ∈ (Base‘𝐾))) → ((((𝐺 𝐻) (𝑃 𝑄)) (𝐺 𝐻) ∧ ((𝐺 𝐻) (𝑃 𝑄)) 𝐵) ↔ ((𝐺 𝐻) (𝑃 𝑄)) ((𝐺 𝐻) 𝐵)))
533, 47, 20, 51, 52syl13anc 1374 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ((((𝐺 𝐻) (𝑃 𝑄)) (𝐺 𝐻) ∧ ((𝐺 𝐻) (𝑃 𝑄)) 𝐵) ↔ ((𝐺 𝐻) (𝑃 𝑄)) ((𝐺 𝐻) 𝐵)))
5424, 45, 53mpbi2and 712 . 2 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑃 𝑄)) ((𝐺 𝐻) 𝐵))
55 hlatl 39353 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
565, 55syl 17 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ AtLat)
571, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 25dalem52 39718 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑃 𝑄)) ∈ 𝐴)
581, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 25, 44dalem54 39720 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐵) ∈ 𝐴)
596, 8atcmp 39304 . . 3 ((𝐾 ∈ AtLat ∧ ((𝐺 𝐻) (𝑃 𝑄)) ∈ 𝐴 ∧ ((𝐺 𝐻) 𝐵) ∈ 𝐴) → (((𝐺 𝐻) (𝑃 𝑄)) ((𝐺 𝐻) 𝐵) ↔ ((𝐺 𝐻) (𝑃 𝑄)) = ((𝐺 𝐻) 𝐵)))
6056, 57, 58, 59syl3anc 1373 . 2 ((𝜑𝑌 = 𝑍𝜓) → (((𝐺 𝐻) (𝑃 𝑄)) ((𝐺 𝐻) 𝐵) ↔ ((𝐺 𝐻) (𝑃 𝑄)) = ((𝐺 𝐻) 𝐵)))
6154, 60mpbid 232 1 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑃 𝑄)) = ((𝐺 𝐻) 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  joincjn 18272  meetcmee 18273  Latclat 18390  Atomscatm 39256  AtLatcal 39257  HLchlt 39343  LLinesclln 39485  LPlanesclpl 39486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-llines 39492  df-lplanes 39493  df-lvols 39494
This theorem is referenced by:  dalem56  39722  dalem57  39723
  Copyright terms: Public domain W3C validator