Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem17 Structured version   Visualization version   GIF version

Theorem dalem17 39681
Description: Lemma for dath 39737. When planes 𝑌 and 𝑍 are equal, the center of perspectivity 𝐶 is in 𝑌. (Contributed by NM, 1-Aug-2012.)
Hypotheses
Ref Expression
dalema.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalemc.l = (le‘𝐾)
dalemc.j = (join‘𝐾)
dalemc.a 𝐴 = (Atoms‘𝐾)
dalem17.o 𝑂 = (LPlanes‘𝐾)
dalem17.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem17.z 𝑍 = ((𝑆 𝑇) 𝑈)
Assertion
Ref Expression
dalem17 ((𝜑𝑌 = 𝑍) → 𝐶 𝑌)

Proof of Theorem dalem17
StepHypRef Expression
1 dalema.ph . . . 4 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
21dalemclrju 39637 . . 3 (𝜑𝐶 (𝑅 𝑈))
32adantr 480 . 2 ((𝜑𝑌 = 𝑍) → 𝐶 (𝑅 𝑈))
41dalemkelat 39625 . . . . . 6 (𝜑𝐾 ∈ Lat)
5 dalemc.j . . . . . . 7 = (join‘𝐾)
6 dalemc.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
71, 5, 6dalempjqeb 39646 . . . . . 6 (𝜑 → (𝑃 𝑄) ∈ (Base‘𝐾))
81, 6dalemreb 39642 . . . . . 6 (𝜑𝑅 ∈ (Base‘𝐾))
9 eqid 2730 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
10 dalemc.l . . . . . . 7 = (le‘𝐾)
119, 10, 5latlej2 18415 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → 𝑅 ((𝑃 𝑄) 𝑅))
124, 7, 8, 11syl3anc 1373 . . . . 5 (𝜑𝑅 ((𝑃 𝑄) 𝑅))
13 dalem17.y . . . . 5 𝑌 = ((𝑃 𝑄) 𝑅)
1412, 13breqtrrdi 5152 . . . 4 (𝜑𝑅 𝑌)
1514adantr 480 . . 3 ((𝜑𝑌 = 𝑍) → 𝑅 𝑌)
161, 5, 6dalemsjteb 39647 . . . . . . 7 (𝜑 → (𝑆 𝑇) ∈ (Base‘𝐾))
171, 6dalemueb 39645 . . . . . . 7 (𝜑𝑈 ∈ (Base‘𝐾))
189, 10, 5latlej2 18415 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑆 𝑇) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → 𝑈 ((𝑆 𝑇) 𝑈))
194, 16, 17, 18syl3anc 1373 . . . . . 6 (𝜑𝑈 ((𝑆 𝑇) 𝑈))
20 dalem17.z . . . . . 6 𝑍 = ((𝑆 𝑇) 𝑈)
2119, 20breqtrrdi 5152 . . . . 5 (𝜑𝑈 𝑍)
2221adantr 480 . . . 4 ((𝜑𝑌 = 𝑍) → 𝑈 𝑍)
23 simpr 484 . . . 4 ((𝜑𝑌 = 𝑍) → 𝑌 = 𝑍)
2422, 23breqtrrd 5138 . . 3 ((𝜑𝑌 = 𝑍) → 𝑈 𝑌)
25 dalem17.o . . . . . 6 𝑂 = (LPlanes‘𝐾)
261, 25dalemyeb 39650 . . . . 5 (𝜑𝑌 ∈ (Base‘𝐾))
279, 10, 5latjle12 18416 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾))) → ((𝑅 𝑌𝑈 𝑌) ↔ (𝑅 𝑈) 𝑌))
284, 8, 17, 26, 27syl13anc 1374 . . . 4 (𝜑 → ((𝑅 𝑌𝑈 𝑌) ↔ (𝑅 𝑈) 𝑌))
2928adantr 480 . . 3 ((𝜑𝑌 = 𝑍) → ((𝑅 𝑌𝑈 𝑌) ↔ (𝑅 𝑈) 𝑌))
3015, 24, 29mpbi2and 712 . 2 ((𝜑𝑌 = 𝑍) → (𝑅 𝑈) 𝑌)
311, 6dalemceb 39639 . . . 4 (𝜑𝐶 ∈ (Base‘𝐾))
321dalemkehl 39624 . . . . 5 (𝜑𝐾 ∈ HL)
331dalemrea 39629 . . . . 5 (𝜑𝑅𝐴)
341dalemuea 39632 . . . . 5 (𝜑𝑈𝐴)
359, 5, 6hlatjcl 39367 . . . . 5 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑈𝐴) → (𝑅 𝑈) ∈ (Base‘𝐾))
3632, 33, 34, 35syl3anc 1373 . . . 4 (𝜑 → (𝑅 𝑈) ∈ (Base‘𝐾))
379, 10lattr 18410 . . . 4 ((𝐾 ∈ Lat ∧ (𝐶 ∈ (Base‘𝐾) ∧ (𝑅 𝑈) ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾))) → ((𝐶 (𝑅 𝑈) ∧ (𝑅 𝑈) 𝑌) → 𝐶 𝑌))
384, 31, 36, 26, 37syl13anc 1374 . . 3 (𝜑 → ((𝐶 (𝑅 𝑈) ∧ (𝑅 𝑈) 𝑌) → 𝐶 𝑌))
3938adantr 480 . 2 ((𝜑𝑌 = 𝑍) → ((𝐶 (𝑅 𝑈) ∧ (𝑅 𝑈) 𝑌) → 𝐶 𝑌))
403, 30, 39mp2and 699 1 ((𝜑𝑌 = 𝑍) → 𝐶 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5110  cfv 6514  (class class class)co 7390  Basecbs 17186  lecple 17234  joincjn 18279  Latclat 18397  Atomscatm 39263  HLchlt 39350  LPlanesclpl 39493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-poset 18281  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-lat 18398  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-lplanes 39500
This theorem is referenced by:  dalem19  39683  dalem25  39699
  Copyright terms: Public domain W3C validator