Proof of Theorem dalem17
Step | Hyp | Ref
| Expression |
1 | | dalema.ph |
. . . 4
⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
2 | 1 | dalemclrju 37650 |
. . 3
⊢ (𝜑 → 𝐶 ≤ (𝑅 ∨ 𝑈)) |
3 | 2 | adantr 481 |
. 2
⊢ ((𝜑 ∧ 𝑌 = 𝑍) → 𝐶 ≤ (𝑅 ∨ 𝑈)) |
4 | 1 | dalemkelat 37638 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ Lat) |
5 | | dalemc.j |
. . . . . . 7
⊢ ∨ =
(join‘𝐾) |
6 | | dalemc.a |
. . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) |
7 | 1, 5, 6 | dalempjqeb 37659 |
. . . . . 6
⊢ (𝜑 → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
8 | 1, 6 | dalemreb 37655 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ (Base‘𝐾)) |
9 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝐾) =
(Base‘𝐾) |
10 | | dalemc.l |
. . . . . . 7
⊢ ≤ =
(le‘𝐾) |
11 | 9, 10, 5 | latlej2 18167 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) |
12 | 4, 7, 8, 11 | syl3anc 1370 |
. . . . 5
⊢ (𝜑 → 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) |
13 | | dalem17.y |
. . . . 5
⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
14 | 12, 13 | breqtrrdi 5116 |
. . . 4
⊢ (𝜑 → 𝑅 ≤ 𝑌) |
15 | 14 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑌 = 𝑍) → 𝑅 ≤ 𝑌) |
16 | 1, 5, 6 | dalemsjteb 37660 |
. . . . . . 7
⊢ (𝜑 → (𝑆 ∨ 𝑇) ∈ (Base‘𝐾)) |
17 | 1, 6 | dalemueb 37658 |
. . . . . . 7
⊢ (𝜑 → 𝑈 ∈ (Base‘𝐾)) |
18 | 9, 10, 5 | latlej2 18167 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝑆 ∨ 𝑇) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → 𝑈 ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) |
19 | 4, 16, 17, 18 | syl3anc 1370 |
. . . . . 6
⊢ (𝜑 → 𝑈 ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) |
20 | | dalem17.z |
. . . . . 6
⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) |
21 | 19, 20 | breqtrrdi 5116 |
. . . . 5
⊢ (𝜑 → 𝑈 ≤ 𝑍) |
22 | 21 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 = 𝑍) → 𝑈 ≤ 𝑍) |
23 | | simpr 485 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 = 𝑍) → 𝑌 = 𝑍) |
24 | 22, 23 | breqtrrd 5102 |
. . 3
⊢ ((𝜑 ∧ 𝑌 = 𝑍) → 𝑈 ≤ 𝑌) |
25 | | dalem17.o |
. . . . . 6
⊢ 𝑂 = (LPlanes‘𝐾) |
26 | 1, 25 | dalemyeb 37663 |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ (Base‘𝐾)) |
27 | 9, 10, 5 | latjle12 18168 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾))) → ((𝑅 ≤ 𝑌 ∧ 𝑈 ≤ 𝑌) ↔ (𝑅 ∨ 𝑈) ≤ 𝑌)) |
28 | 4, 8, 17, 26, 27 | syl13anc 1371 |
. . . 4
⊢ (𝜑 → ((𝑅 ≤ 𝑌 ∧ 𝑈 ≤ 𝑌) ↔ (𝑅 ∨ 𝑈) ≤ 𝑌)) |
29 | 28 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑌 = 𝑍) → ((𝑅 ≤ 𝑌 ∧ 𝑈 ≤ 𝑌) ↔ (𝑅 ∨ 𝑈) ≤ 𝑌)) |
30 | 15, 24, 29 | mpbi2and 709 |
. 2
⊢ ((𝜑 ∧ 𝑌 = 𝑍) → (𝑅 ∨ 𝑈) ≤ 𝑌) |
31 | 1, 6 | dalemceb 37652 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ (Base‘𝐾)) |
32 | 1 | dalemkehl 37637 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ HL) |
33 | 1 | dalemrea 37642 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ 𝐴) |
34 | 1 | dalemuea 37645 |
. . . . 5
⊢ (𝜑 → 𝑈 ∈ 𝐴) |
35 | 9, 5, 6 | hlatjcl 37381 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴) → (𝑅 ∨ 𝑈) ∈ (Base‘𝐾)) |
36 | 32, 33, 34, 35 | syl3anc 1370 |
. . . 4
⊢ (𝜑 → (𝑅 ∨ 𝑈) ∈ (Base‘𝐾)) |
37 | 9, 10 | lattr 18162 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝐶 ∈ (Base‘𝐾) ∧ (𝑅 ∨ 𝑈) ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾))) → ((𝐶 ≤ (𝑅 ∨ 𝑈) ∧ (𝑅 ∨ 𝑈) ≤ 𝑌) → 𝐶 ≤ 𝑌)) |
38 | 4, 31, 36, 26, 37 | syl13anc 1371 |
. . 3
⊢ (𝜑 → ((𝐶 ≤ (𝑅 ∨ 𝑈) ∧ (𝑅 ∨ 𝑈) ≤ 𝑌) → 𝐶 ≤ 𝑌)) |
39 | 38 | adantr 481 |
. 2
⊢ ((𝜑 ∧ 𝑌 = 𝑍) → ((𝐶 ≤ (𝑅 ∨ 𝑈) ∧ (𝑅 ∨ 𝑈) ≤ 𝑌) → 𝐶 ≤ 𝑌)) |
40 | 3, 30, 39 | mp2and 696 |
1
⊢ ((𝜑 ∧ 𝑌 = 𝑍) → 𝐶 ≤ 𝑌) |