Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem17 Structured version   Visualization version   GIF version

Theorem dalem17 36818
Description: Lemma for dath 36874. When planes 𝑌 and 𝑍 are equal, the center of perspectivity 𝐶 is in 𝑌. (Contributed by NM, 1-Aug-2012.)
Hypotheses
Ref Expression
dalema.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalemc.l = (le‘𝐾)
dalemc.j = (join‘𝐾)
dalemc.a 𝐴 = (Atoms‘𝐾)
dalem17.o 𝑂 = (LPlanes‘𝐾)
dalem17.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem17.z 𝑍 = ((𝑆 𝑇) 𝑈)
Assertion
Ref Expression
dalem17 ((𝜑𝑌 = 𝑍) → 𝐶 𝑌)

Proof of Theorem dalem17
StepHypRef Expression
1 dalema.ph . . . 4 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
21dalemclrju 36774 . . 3 (𝜑𝐶 (𝑅 𝑈))
32adantr 483 . 2 ((𝜑𝑌 = 𝑍) → 𝐶 (𝑅 𝑈))
41dalemkelat 36762 . . . . . 6 (𝜑𝐾 ∈ Lat)
5 dalemc.j . . . . . . 7 = (join‘𝐾)
6 dalemc.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
71, 5, 6dalempjqeb 36783 . . . . . 6 (𝜑 → (𝑃 𝑄) ∈ (Base‘𝐾))
81, 6dalemreb 36779 . . . . . 6 (𝜑𝑅 ∈ (Base‘𝐾))
9 eqid 2823 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
10 dalemc.l . . . . . . 7 = (le‘𝐾)
119, 10, 5latlej2 17673 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → 𝑅 ((𝑃 𝑄) 𝑅))
124, 7, 8, 11syl3anc 1367 . . . . 5 (𝜑𝑅 ((𝑃 𝑄) 𝑅))
13 dalem17.y . . . . 5 𝑌 = ((𝑃 𝑄) 𝑅)
1412, 13breqtrrdi 5110 . . . 4 (𝜑𝑅 𝑌)
1514adantr 483 . . 3 ((𝜑𝑌 = 𝑍) → 𝑅 𝑌)
161, 5, 6dalemsjteb 36784 . . . . . . 7 (𝜑 → (𝑆 𝑇) ∈ (Base‘𝐾))
171, 6dalemueb 36782 . . . . . . 7 (𝜑𝑈 ∈ (Base‘𝐾))
189, 10, 5latlej2 17673 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑆 𝑇) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → 𝑈 ((𝑆 𝑇) 𝑈))
194, 16, 17, 18syl3anc 1367 . . . . . 6 (𝜑𝑈 ((𝑆 𝑇) 𝑈))
20 dalem17.z . . . . . 6 𝑍 = ((𝑆 𝑇) 𝑈)
2119, 20breqtrrdi 5110 . . . . 5 (𝜑𝑈 𝑍)
2221adantr 483 . . . 4 ((𝜑𝑌 = 𝑍) → 𝑈 𝑍)
23 simpr 487 . . . 4 ((𝜑𝑌 = 𝑍) → 𝑌 = 𝑍)
2422, 23breqtrrd 5096 . . 3 ((𝜑𝑌 = 𝑍) → 𝑈 𝑌)
25 dalem17.o . . . . . 6 𝑂 = (LPlanes‘𝐾)
261, 25dalemyeb 36787 . . . . 5 (𝜑𝑌 ∈ (Base‘𝐾))
279, 10, 5latjle12 17674 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾))) → ((𝑅 𝑌𝑈 𝑌) ↔ (𝑅 𝑈) 𝑌))
284, 8, 17, 26, 27syl13anc 1368 . . . 4 (𝜑 → ((𝑅 𝑌𝑈 𝑌) ↔ (𝑅 𝑈) 𝑌))
2928adantr 483 . . 3 ((𝜑𝑌 = 𝑍) → ((𝑅 𝑌𝑈 𝑌) ↔ (𝑅 𝑈) 𝑌))
3015, 24, 29mpbi2and 710 . 2 ((𝜑𝑌 = 𝑍) → (𝑅 𝑈) 𝑌)
311, 6dalemceb 36776 . . . 4 (𝜑𝐶 ∈ (Base‘𝐾))
321dalemkehl 36761 . . . . 5 (𝜑𝐾 ∈ HL)
331dalemrea 36766 . . . . 5 (𝜑𝑅𝐴)
341dalemuea 36769 . . . . 5 (𝜑𝑈𝐴)
359, 5, 6hlatjcl 36505 . . . . 5 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑈𝐴) → (𝑅 𝑈) ∈ (Base‘𝐾))
3632, 33, 34, 35syl3anc 1367 . . . 4 (𝜑 → (𝑅 𝑈) ∈ (Base‘𝐾))
379, 10lattr 17668 . . . 4 ((𝐾 ∈ Lat ∧ (𝐶 ∈ (Base‘𝐾) ∧ (𝑅 𝑈) ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾))) → ((𝐶 (𝑅 𝑈) ∧ (𝑅 𝑈) 𝑌) → 𝐶 𝑌))
384, 31, 36, 26, 37syl13anc 1368 . . 3 (𝜑 → ((𝐶 (𝑅 𝑈) ∧ (𝑅 𝑈) 𝑌) → 𝐶 𝑌))
3938adantr 483 . 2 ((𝜑𝑌 = 𝑍) → ((𝐶 (𝑅 𝑈) ∧ (𝑅 𝑈) 𝑌) → 𝐶 𝑌))
403, 30, 39mp2and 697 1 ((𝜑𝑌 = 𝑍) → 𝐶 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114   class class class wbr 5068  cfv 6357  (class class class)co 7158  Basecbs 16485  lecple 16574  joincjn 17556  Latclat 17657  Atomscatm 36401  HLchlt 36488  LPlanesclpl 36630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-poset 17558  df-lub 17586  df-glb 17587  df-join 17588  df-meet 17589  df-lat 17658  df-ats 36405  df-atl 36436  df-cvlat 36460  df-hlat 36489  df-lplanes 36637
This theorem is referenced by:  dalem19  36820  dalem25  36836
  Copyright terms: Public domain W3C validator