Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem17 Structured version   Visualization version   GIF version

Theorem dalem17 39682
Description: Lemma for dath 39738. When planes 𝑌 and 𝑍 are equal, the center of perspectivity 𝐶 is in 𝑌. (Contributed by NM, 1-Aug-2012.)
Hypotheses
Ref Expression
dalema.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalemc.l = (le‘𝐾)
dalemc.j = (join‘𝐾)
dalemc.a 𝐴 = (Atoms‘𝐾)
dalem17.o 𝑂 = (LPlanes‘𝐾)
dalem17.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem17.z 𝑍 = ((𝑆 𝑇) 𝑈)
Assertion
Ref Expression
dalem17 ((𝜑𝑌 = 𝑍) → 𝐶 𝑌)

Proof of Theorem dalem17
StepHypRef Expression
1 dalema.ph . . . 4 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
21dalemclrju 39638 . . 3 (𝜑𝐶 (𝑅 𝑈))
32adantr 480 . 2 ((𝜑𝑌 = 𝑍) → 𝐶 (𝑅 𝑈))
41dalemkelat 39626 . . . . . 6 (𝜑𝐾 ∈ Lat)
5 dalemc.j . . . . . . 7 = (join‘𝐾)
6 dalemc.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
71, 5, 6dalempjqeb 39647 . . . . . 6 (𝜑 → (𝑃 𝑄) ∈ (Base‘𝐾))
81, 6dalemreb 39643 . . . . . 6 (𝜑𝑅 ∈ (Base‘𝐾))
9 eqid 2737 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
10 dalemc.l . . . . . . 7 = (le‘𝐾)
119, 10, 5latlej2 18494 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → 𝑅 ((𝑃 𝑄) 𝑅))
124, 7, 8, 11syl3anc 1373 . . . . 5 (𝜑𝑅 ((𝑃 𝑄) 𝑅))
13 dalem17.y . . . . 5 𝑌 = ((𝑃 𝑄) 𝑅)
1412, 13breqtrrdi 5185 . . . 4 (𝜑𝑅 𝑌)
1514adantr 480 . . 3 ((𝜑𝑌 = 𝑍) → 𝑅 𝑌)
161, 5, 6dalemsjteb 39648 . . . . . . 7 (𝜑 → (𝑆 𝑇) ∈ (Base‘𝐾))
171, 6dalemueb 39646 . . . . . . 7 (𝜑𝑈 ∈ (Base‘𝐾))
189, 10, 5latlej2 18494 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑆 𝑇) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → 𝑈 ((𝑆 𝑇) 𝑈))
194, 16, 17, 18syl3anc 1373 . . . . . 6 (𝜑𝑈 ((𝑆 𝑇) 𝑈))
20 dalem17.z . . . . . 6 𝑍 = ((𝑆 𝑇) 𝑈)
2119, 20breqtrrdi 5185 . . . . 5 (𝜑𝑈 𝑍)
2221adantr 480 . . . 4 ((𝜑𝑌 = 𝑍) → 𝑈 𝑍)
23 simpr 484 . . . 4 ((𝜑𝑌 = 𝑍) → 𝑌 = 𝑍)
2422, 23breqtrrd 5171 . . 3 ((𝜑𝑌 = 𝑍) → 𝑈 𝑌)
25 dalem17.o . . . . . 6 𝑂 = (LPlanes‘𝐾)
261, 25dalemyeb 39651 . . . . 5 (𝜑𝑌 ∈ (Base‘𝐾))
279, 10, 5latjle12 18495 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾))) → ((𝑅 𝑌𝑈 𝑌) ↔ (𝑅 𝑈) 𝑌))
284, 8, 17, 26, 27syl13anc 1374 . . . 4 (𝜑 → ((𝑅 𝑌𝑈 𝑌) ↔ (𝑅 𝑈) 𝑌))
2928adantr 480 . . 3 ((𝜑𝑌 = 𝑍) → ((𝑅 𝑌𝑈 𝑌) ↔ (𝑅 𝑈) 𝑌))
3015, 24, 29mpbi2and 712 . 2 ((𝜑𝑌 = 𝑍) → (𝑅 𝑈) 𝑌)
311, 6dalemceb 39640 . . . 4 (𝜑𝐶 ∈ (Base‘𝐾))
321dalemkehl 39625 . . . . 5 (𝜑𝐾 ∈ HL)
331dalemrea 39630 . . . . 5 (𝜑𝑅𝐴)
341dalemuea 39633 . . . . 5 (𝜑𝑈𝐴)
359, 5, 6hlatjcl 39368 . . . . 5 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑈𝐴) → (𝑅 𝑈) ∈ (Base‘𝐾))
3632, 33, 34, 35syl3anc 1373 . . . 4 (𝜑 → (𝑅 𝑈) ∈ (Base‘𝐾))
379, 10lattr 18489 . . . 4 ((𝐾 ∈ Lat ∧ (𝐶 ∈ (Base‘𝐾) ∧ (𝑅 𝑈) ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾))) → ((𝐶 (𝑅 𝑈) ∧ (𝑅 𝑈) 𝑌) → 𝐶 𝑌))
384, 31, 36, 26, 37syl13anc 1374 . . 3 (𝜑 → ((𝐶 (𝑅 𝑈) ∧ (𝑅 𝑈) 𝑌) → 𝐶 𝑌))
3938adantr 480 . 2 ((𝜑𝑌 = 𝑍) → ((𝐶 (𝑅 𝑈) ∧ (𝑅 𝑈) 𝑌) → 𝐶 𝑌))
403, 30, 39mp2and 699 1 ((𝜑𝑌 = 𝑍) → 𝐶 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108   class class class wbr 5143  cfv 6561  (class class class)co 7431  Basecbs 17247  lecple 17304  joincjn 18357  Latclat 18476  Atomscatm 39264  HLchlt 39351  LPlanesclpl 39494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-poset 18359  df-lub 18391  df-glb 18392  df-join 18393  df-meet 18394  df-lat 18477  df-ats 39268  df-atl 39299  df-cvlat 39323  df-hlat 39352  df-lplanes 39501
This theorem is referenced by:  dalem19  39684  dalem25  39700
  Copyright terms: Public domain W3C validator