Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dalemdea | Structured version Visualization version GIF version |
Description: Lemma for dath 37971. Frequently-used utility lemma. (Contributed by NM, 11-Aug-2012.) |
Ref | Expression |
---|---|
dalema.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
dalemc.l | ⊢ ≤ = (le‘𝐾) |
dalemc.j | ⊢ ∨ = (join‘𝐾) |
dalemc.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dalemdea.m | ⊢ ∧ = (meet‘𝐾) |
dalemdea.o | ⊢ 𝑂 = (LPlanes‘𝐾) |
dalemdea.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
dalemdea.z | ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) |
dalemdea.d | ⊢ 𝐷 = ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) |
Ref | Expression |
---|---|
dalemdea | ⊢ (𝜑 → 𝐷 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalemdea.d | . 2 ⊢ 𝐷 = ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) | |
2 | dalema.ph | . . . 4 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | |
3 | dalemc.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
4 | dalemc.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
5 | dalemc.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | dalemdea.o | . . . 4 ⊢ 𝑂 = (LPlanes‘𝐾) | |
7 | dalemdea.y | . . . 4 ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) | |
8 | 2, 3, 4, 5, 6, 7 | dalem2 37896 | . . 3 ⊢ (𝜑 → ((𝑃 ∨ 𝑄) ∨ (𝑆 ∨ 𝑇)) ∈ 𝑂) |
9 | 2 | dalemkehl 37858 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ HL) |
10 | 2 | dalempea 37861 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ 𝐴) |
11 | 2 | dalemqea 37862 | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
12 | 2 | dalemrea 37863 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ 𝐴) |
13 | 2 | dalemyeo 37867 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑂) |
14 | 4, 5, 6, 7 | lplnri1 37788 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑌 ∈ 𝑂) → 𝑃 ≠ 𝑄) |
15 | 9, 10, 11, 12, 13, 14 | syl131anc 1382 | . . . . 5 ⊢ (𝜑 → 𝑃 ≠ 𝑄) |
16 | eqid 2737 | . . . . . 6 ⊢ (LLines‘𝐾) = (LLines‘𝐾) | |
17 | 4, 5, 16 | llni2 37747 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑃 ∨ 𝑄) ∈ (LLines‘𝐾)) |
18 | 9, 10, 11, 15, 17 | syl31anc 1372 | . . . 4 ⊢ (𝜑 → (𝑃 ∨ 𝑄) ∈ (LLines‘𝐾)) |
19 | 2 | dalemsea 37864 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ 𝐴) |
20 | 2 | dalemtea 37865 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ 𝐴) |
21 | 2 | dalemuea 37866 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ 𝐴) |
22 | 2 | dalemzeo 37868 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑂) |
23 | dalemdea.z | . . . . . . 7 ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) | |
24 | 4, 5, 6, 23 | lplnri1 37788 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴) ∧ 𝑍 ∈ 𝑂) → 𝑆 ≠ 𝑇) |
25 | 9, 19, 20, 21, 22, 24 | syl131anc 1382 | . . . . 5 ⊢ (𝜑 → 𝑆 ≠ 𝑇) |
26 | 4, 5, 16 | llni2 37747 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ 𝑆 ≠ 𝑇) → (𝑆 ∨ 𝑇) ∈ (LLines‘𝐾)) |
27 | 9, 19, 20, 25, 26 | syl31anc 1372 | . . . 4 ⊢ (𝜑 → (𝑆 ∨ 𝑇) ∈ (LLines‘𝐾)) |
28 | dalemdea.m | . . . . 5 ⊢ ∧ = (meet‘𝐾) | |
29 | 4, 28, 5, 16, 6 | 2llnmj 37795 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∨ 𝑄) ∈ (LLines‘𝐾) ∧ (𝑆 ∨ 𝑇) ∈ (LLines‘𝐾)) → (((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ∈ 𝐴 ↔ ((𝑃 ∨ 𝑄) ∨ (𝑆 ∨ 𝑇)) ∈ 𝑂)) |
30 | 9, 18, 27, 29 | syl3anc 1370 | . . 3 ⊢ (𝜑 → (((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ∈ 𝐴 ↔ ((𝑃 ∨ 𝑄) ∨ (𝑆 ∨ 𝑇)) ∈ 𝑂)) |
31 | 8, 30 | mpbird 256 | . 2 ⊢ (𝜑 → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ∈ 𝐴) |
32 | 1, 31 | eqeltrid 2842 | 1 ⊢ (𝜑 → 𝐷 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2941 class class class wbr 5087 ‘cfv 6466 (class class class)co 7317 Basecbs 16989 lecple 17046 joincjn 18106 meetcmee 18107 Atomscatm 37497 HLchlt 37584 LLinesclln 37726 LPlanesclpl 37727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-riota 7274 df-ov 7320 df-oprab 7321 df-proset 18090 df-poset 18108 df-plt 18125 df-lub 18141 df-glb 18142 df-join 18143 df-meet 18144 df-p0 18220 df-lat 18227 df-clat 18294 df-oposet 37410 df-ol 37412 df-oml 37413 df-covers 37500 df-ats 37501 df-atl 37532 df-cvlat 37556 df-hlat 37585 df-llines 37733 df-lplanes 37734 |
This theorem is referenced by: dalemeea 37898 dalem3 37899 dalem16 37914 dalem52 37959 dalem57 37964 dalem60 37967 |
Copyright terms: Public domain | W3C validator |