Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalemdea Structured version   Visualization version   GIF version

Theorem dalemdea 39701
Description: Lemma for dath 39775. Frequently-used utility lemma. (Contributed by NM, 11-Aug-2012.)
Hypotheses
Ref Expression
dalema.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalemc.l = (le‘𝐾)
dalemc.j = (join‘𝐾)
dalemc.a 𝐴 = (Atoms‘𝐾)
dalemdea.m = (meet‘𝐾)
dalemdea.o 𝑂 = (LPlanes‘𝐾)
dalemdea.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalemdea.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalemdea.d 𝐷 = ((𝑃 𝑄) (𝑆 𝑇))
Assertion
Ref Expression
dalemdea (𝜑𝐷𝐴)

Proof of Theorem dalemdea
StepHypRef Expression
1 dalemdea.d . 2 𝐷 = ((𝑃 𝑄) (𝑆 𝑇))
2 dalema.ph . . . 4 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
3 dalemc.l . . . 4 = (le‘𝐾)
4 dalemc.j . . . 4 = (join‘𝐾)
5 dalemc.a . . . 4 𝐴 = (Atoms‘𝐾)
6 dalemdea.o . . . 4 𝑂 = (LPlanes‘𝐾)
7 dalemdea.y . . . 4 𝑌 = ((𝑃 𝑄) 𝑅)
82, 3, 4, 5, 6, 7dalem2 39700 . . 3 (𝜑 → ((𝑃 𝑄) (𝑆 𝑇)) ∈ 𝑂)
92dalemkehl 39662 . . . 4 (𝜑𝐾 ∈ HL)
102dalempea 39665 . . . . 5 (𝜑𝑃𝐴)
112dalemqea 39666 . . . . 5 (𝜑𝑄𝐴)
122dalemrea 39667 . . . . . 6 (𝜑𝑅𝐴)
132dalemyeo 39671 . . . . . 6 (𝜑𝑌𝑂)
144, 5, 6, 7lplnri1 39592 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑌𝑂) → 𝑃𝑄)
159, 10, 11, 12, 13, 14syl131anc 1385 . . . . 5 (𝜑𝑃𝑄)
16 eqid 2731 . . . . . 6 (LLines‘𝐾) = (LLines‘𝐾)
174, 5, 16llni2 39551 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 𝑄) ∈ (LLines‘𝐾))
189, 10, 11, 15, 17syl31anc 1375 . . . 4 (𝜑 → (𝑃 𝑄) ∈ (LLines‘𝐾))
192dalemsea 39668 . . . . 5 (𝜑𝑆𝐴)
202dalemtea 39669 . . . . 5 (𝜑𝑇𝐴)
212dalemuea 39670 . . . . . 6 (𝜑𝑈𝐴)
222dalemzeo 39672 . . . . . 6 (𝜑𝑍𝑂)
23 dalemdea.z . . . . . . 7 𝑍 = ((𝑆 𝑇) 𝑈)
244, 5, 6, 23lplnri1 39592 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑈𝐴) ∧ 𝑍𝑂) → 𝑆𝑇)
259, 19, 20, 21, 22, 24syl131anc 1385 . . . . 5 (𝜑𝑆𝑇)
264, 5, 16llni2 39551 . . . . 5 (((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) ∧ 𝑆𝑇) → (𝑆 𝑇) ∈ (LLines‘𝐾))
279, 19, 20, 25, 26syl31anc 1375 . . . 4 (𝜑 → (𝑆 𝑇) ∈ (LLines‘𝐾))
28 dalemdea.m . . . . 5 = (meet‘𝐾)
294, 28, 5, 16, 62llnmj 39599 . . . 4 ((𝐾 ∈ HL ∧ (𝑃 𝑄) ∈ (LLines‘𝐾) ∧ (𝑆 𝑇) ∈ (LLines‘𝐾)) → (((𝑃 𝑄) (𝑆 𝑇)) ∈ 𝐴 ↔ ((𝑃 𝑄) (𝑆 𝑇)) ∈ 𝑂))
309, 18, 27, 29syl3anc 1373 . . 3 (𝜑 → (((𝑃 𝑄) (𝑆 𝑇)) ∈ 𝐴 ↔ ((𝑃 𝑄) (𝑆 𝑇)) ∈ 𝑂))
318, 30mpbird 257 . 2 (𝜑 → ((𝑃 𝑄) (𝑆 𝑇)) ∈ 𝐴)
321, 31eqeltrid 2835 1 (𝜑𝐷𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5086  cfv 6476  (class class class)co 7341  Basecbs 17115  lecple 17163  joincjn 18212  meetcmee 18213  Atomscatm 39302  HLchlt 39389  LLinesclln 39530  LPlanesclpl 39531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-proset 18195  df-poset 18214  df-plt 18229  df-lub 18245  df-glb 18246  df-join 18247  df-meet 18248  df-p0 18324  df-lat 18333  df-clat 18400  df-oposet 39215  df-ol 39217  df-oml 39218  df-covers 39305  df-ats 39306  df-atl 39337  df-cvlat 39361  df-hlat 39390  df-llines 39537  df-lplanes 39538
This theorem is referenced by:  dalemeea  39702  dalem3  39703  dalem16  39718  dalem52  39763  dalem57  39768  dalem60  39771
  Copyright terms: Public domain W3C validator