Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalemdea Structured version   Visualization version   GIF version

Theorem dalemdea 39629
Description: Lemma for dath 39703. Frequently-used utility lemma. (Contributed by NM, 11-Aug-2012.)
Hypotheses
Ref Expression
dalema.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalemc.l = (le‘𝐾)
dalemc.j = (join‘𝐾)
dalemc.a 𝐴 = (Atoms‘𝐾)
dalemdea.m = (meet‘𝐾)
dalemdea.o 𝑂 = (LPlanes‘𝐾)
dalemdea.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalemdea.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalemdea.d 𝐷 = ((𝑃 𝑄) (𝑆 𝑇))
Assertion
Ref Expression
dalemdea (𝜑𝐷𝐴)

Proof of Theorem dalemdea
StepHypRef Expression
1 dalemdea.d . 2 𝐷 = ((𝑃 𝑄) (𝑆 𝑇))
2 dalema.ph . . . 4 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
3 dalemc.l . . . 4 = (le‘𝐾)
4 dalemc.j . . . 4 = (join‘𝐾)
5 dalemc.a . . . 4 𝐴 = (Atoms‘𝐾)
6 dalemdea.o . . . 4 𝑂 = (LPlanes‘𝐾)
7 dalemdea.y . . . 4 𝑌 = ((𝑃 𝑄) 𝑅)
82, 3, 4, 5, 6, 7dalem2 39628 . . 3 (𝜑 → ((𝑃 𝑄) (𝑆 𝑇)) ∈ 𝑂)
92dalemkehl 39590 . . . 4 (𝜑𝐾 ∈ HL)
102dalempea 39593 . . . . 5 (𝜑𝑃𝐴)
112dalemqea 39594 . . . . 5 (𝜑𝑄𝐴)
122dalemrea 39595 . . . . . 6 (𝜑𝑅𝐴)
132dalemyeo 39599 . . . . . 6 (𝜑𝑌𝑂)
144, 5, 6, 7lplnri1 39520 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑌𝑂) → 𝑃𝑄)
159, 10, 11, 12, 13, 14syl131anc 1385 . . . . 5 (𝜑𝑃𝑄)
16 eqid 2729 . . . . . 6 (LLines‘𝐾) = (LLines‘𝐾)
174, 5, 16llni2 39479 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 𝑄) ∈ (LLines‘𝐾))
189, 10, 11, 15, 17syl31anc 1375 . . . 4 (𝜑 → (𝑃 𝑄) ∈ (LLines‘𝐾))
192dalemsea 39596 . . . . 5 (𝜑𝑆𝐴)
202dalemtea 39597 . . . . 5 (𝜑𝑇𝐴)
212dalemuea 39598 . . . . . 6 (𝜑𝑈𝐴)
222dalemzeo 39600 . . . . . 6 (𝜑𝑍𝑂)
23 dalemdea.z . . . . . . 7 𝑍 = ((𝑆 𝑇) 𝑈)
244, 5, 6, 23lplnri1 39520 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑈𝐴) ∧ 𝑍𝑂) → 𝑆𝑇)
259, 19, 20, 21, 22, 24syl131anc 1385 . . . . 5 (𝜑𝑆𝑇)
264, 5, 16llni2 39479 . . . . 5 (((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) ∧ 𝑆𝑇) → (𝑆 𝑇) ∈ (LLines‘𝐾))
279, 19, 20, 25, 26syl31anc 1375 . . . 4 (𝜑 → (𝑆 𝑇) ∈ (LLines‘𝐾))
28 dalemdea.m . . . . 5 = (meet‘𝐾)
294, 28, 5, 16, 62llnmj 39527 . . . 4 ((𝐾 ∈ HL ∧ (𝑃 𝑄) ∈ (LLines‘𝐾) ∧ (𝑆 𝑇) ∈ (LLines‘𝐾)) → (((𝑃 𝑄) (𝑆 𝑇)) ∈ 𝐴 ↔ ((𝑃 𝑄) (𝑆 𝑇)) ∈ 𝑂))
309, 18, 27, 29syl3anc 1373 . . 3 (𝜑 → (((𝑃 𝑄) (𝑆 𝑇)) ∈ 𝐴 ↔ ((𝑃 𝑄) (𝑆 𝑇)) ∈ 𝑂))
318, 30mpbird 257 . 2 (𝜑 → ((𝑃 𝑄) (𝑆 𝑇)) ∈ 𝐴)
321, 31eqeltrid 2832 1 (𝜑𝐷𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203  joincjn 18248  meetcmee 18249  Atomscatm 39229  HLchlt 39316  LLinesclln 39458  LPlanesclpl 39459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-proset 18231  df-poset 18250  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-lat 18367  df-clat 18434  df-oposet 39142  df-ol 39144  df-oml 39145  df-covers 39232  df-ats 39233  df-atl 39264  df-cvlat 39288  df-hlat 39317  df-llines 39465  df-lplanes 39466
This theorem is referenced by:  dalemeea  39630  dalem3  39631  dalem16  39646  dalem52  39691  dalem57  39696  dalem60  39699
  Copyright terms: Public domain W3C validator