Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dalemdea | Structured version Visualization version GIF version |
Description: Lemma for dath 37750. Frequently-used utility lemma. (Contributed by NM, 11-Aug-2012.) |
Ref | Expression |
---|---|
dalema.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
dalemc.l | ⊢ ≤ = (le‘𝐾) |
dalemc.j | ⊢ ∨ = (join‘𝐾) |
dalemc.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dalemdea.m | ⊢ ∧ = (meet‘𝐾) |
dalemdea.o | ⊢ 𝑂 = (LPlanes‘𝐾) |
dalemdea.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
dalemdea.z | ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) |
dalemdea.d | ⊢ 𝐷 = ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) |
Ref | Expression |
---|---|
dalemdea | ⊢ (𝜑 → 𝐷 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalemdea.d | . 2 ⊢ 𝐷 = ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) | |
2 | dalema.ph | . . . 4 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | |
3 | dalemc.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
4 | dalemc.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
5 | dalemc.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | dalemdea.o | . . . 4 ⊢ 𝑂 = (LPlanes‘𝐾) | |
7 | dalemdea.y | . . . 4 ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) | |
8 | 2, 3, 4, 5, 6, 7 | dalem2 37675 | . . 3 ⊢ (𝜑 → ((𝑃 ∨ 𝑄) ∨ (𝑆 ∨ 𝑇)) ∈ 𝑂) |
9 | 2 | dalemkehl 37637 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ HL) |
10 | 2 | dalempea 37640 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ 𝐴) |
11 | 2 | dalemqea 37641 | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
12 | 2 | dalemrea 37642 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ 𝐴) |
13 | 2 | dalemyeo 37646 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑂) |
14 | 4, 5, 6, 7 | lplnri1 37567 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑌 ∈ 𝑂) → 𝑃 ≠ 𝑄) |
15 | 9, 10, 11, 12, 13, 14 | syl131anc 1382 | . . . . 5 ⊢ (𝜑 → 𝑃 ≠ 𝑄) |
16 | eqid 2738 | . . . . . 6 ⊢ (LLines‘𝐾) = (LLines‘𝐾) | |
17 | 4, 5, 16 | llni2 37526 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑃 ∨ 𝑄) ∈ (LLines‘𝐾)) |
18 | 9, 10, 11, 15, 17 | syl31anc 1372 | . . . 4 ⊢ (𝜑 → (𝑃 ∨ 𝑄) ∈ (LLines‘𝐾)) |
19 | 2 | dalemsea 37643 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ 𝐴) |
20 | 2 | dalemtea 37644 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ 𝐴) |
21 | 2 | dalemuea 37645 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ 𝐴) |
22 | 2 | dalemzeo 37647 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑂) |
23 | dalemdea.z | . . . . . . 7 ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) | |
24 | 4, 5, 6, 23 | lplnri1 37567 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴) ∧ 𝑍 ∈ 𝑂) → 𝑆 ≠ 𝑇) |
25 | 9, 19, 20, 21, 22, 24 | syl131anc 1382 | . . . . 5 ⊢ (𝜑 → 𝑆 ≠ 𝑇) |
26 | 4, 5, 16 | llni2 37526 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ 𝑆 ≠ 𝑇) → (𝑆 ∨ 𝑇) ∈ (LLines‘𝐾)) |
27 | 9, 19, 20, 25, 26 | syl31anc 1372 | . . . 4 ⊢ (𝜑 → (𝑆 ∨ 𝑇) ∈ (LLines‘𝐾)) |
28 | dalemdea.m | . . . . 5 ⊢ ∧ = (meet‘𝐾) | |
29 | 4, 28, 5, 16, 6 | 2llnmj 37574 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∨ 𝑄) ∈ (LLines‘𝐾) ∧ (𝑆 ∨ 𝑇) ∈ (LLines‘𝐾)) → (((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ∈ 𝐴 ↔ ((𝑃 ∨ 𝑄) ∨ (𝑆 ∨ 𝑇)) ∈ 𝑂)) |
30 | 9, 18, 27, 29 | syl3anc 1370 | . . 3 ⊢ (𝜑 → (((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ∈ 𝐴 ↔ ((𝑃 ∨ 𝑄) ∨ (𝑆 ∨ 𝑇)) ∈ 𝑂)) |
31 | 8, 30 | mpbird 256 | . 2 ⊢ (𝜑 → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ∈ 𝐴) |
32 | 1, 31 | eqeltrid 2843 | 1 ⊢ (𝜑 → 𝐷 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 lecple 16969 joincjn 18029 meetcmee 18030 Atomscatm 37277 HLchlt 37364 LLinesclln 37505 LPlanesclpl 37506 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-proset 18013 df-poset 18031 df-plt 18048 df-lub 18064 df-glb 18065 df-join 18066 df-meet 18067 df-p0 18143 df-lat 18150 df-clat 18217 df-oposet 37190 df-ol 37192 df-oml 37193 df-covers 37280 df-ats 37281 df-atl 37312 df-cvlat 37336 df-hlat 37365 df-llines 37512 df-lplanes 37513 |
This theorem is referenced by: dalemeea 37677 dalem3 37678 dalem16 37693 dalem52 37738 dalem57 37743 dalem60 37746 |
Copyright terms: Public domain | W3C validator |