Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dalemrotyz | Structured version Visualization version GIF version |
Description: Lemma for dath 37729. Rotate triangles 𝑌 = 𝑃𝑄𝑅 and 𝑍 = 𝑆𝑇𝑈 to allow reuse of analogous proofs. (Contributed by NM, 19-Aug-2012.) |
Ref | Expression |
---|---|
dalema.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
dalemc.l | ⊢ ≤ = (le‘𝐾) |
dalemc.j | ⊢ ∨ = (join‘𝐾) |
dalemc.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dalemrot.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
dalemrot.z | ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) |
Ref | Expression |
---|---|
dalemrotyz | ⊢ ((𝜑 ∧ 𝑌 = 𝑍) → ((𝑄 ∨ 𝑅) ∨ 𝑃) = ((𝑇 ∨ 𝑈) ∨ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . 2 ⊢ ((𝜑 ∧ 𝑌 = 𝑍) → 𝑌 = 𝑍) | |
2 | dalemrot.y | . . . 4 ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) | |
3 | dalema.ph | . . . . 5 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | |
4 | dalemc.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
5 | dalemc.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | 3, 4, 5 | dalemqrprot 37641 | . . . 4 ⊢ (𝜑 → ((𝑄 ∨ 𝑅) ∨ 𝑃) = ((𝑃 ∨ 𝑄) ∨ 𝑅)) |
7 | 2, 6 | eqtr4id 2798 | . . 3 ⊢ (𝜑 → 𝑌 = ((𝑄 ∨ 𝑅) ∨ 𝑃)) |
8 | 7 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑌 = 𝑍) → 𝑌 = ((𝑄 ∨ 𝑅) ∨ 𝑃)) |
9 | dalemrot.z | . . . 4 ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) | |
10 | 3 | dalemkehl 37616 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ HL) |
11 | 3 | dalemtea 37623 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ 𝐴) |
12 | 3 | dalemuea 37624 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝐴) |
13 | 3 | dalemsea 37622 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ 𝐴) |
14 | 4, 5 | hlatjrot 37366 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑇 ∨ 𝑈) ∨ 𝑆) = ((𝑆 ∨ 𝑇) ∨ 𝑈)) |
15 | 10, 11, 12, 13, 14 | syl13anc 1370 | . . . 4 ⊢ (𝜑 → ((𝑇 ∨ 𝑈) ∨ 𝑆) = ((𝑆 ∨ 𝑇) ∨ 𝑈)) |
16 | 9, 15 | eqtr4id 2798 | . . 3 ⊢ (𝜑 → 𝑍 = ((𝑇 ∨ 𝑈) ∨ 𝑆)) |
17 | 16 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑌 = 𝑍) → 𝑍 = ((𝑇 ∨ 𝑈) ∨ 𝑆)) |
18 | 1, 8, 17 | 3eqtr3d 2787 | 1 ⊢ ((𝜑 ∧ 𝑌 = 𝑍) → ((𝑄 ∨ 𝑅) ∨ 𝑃) = ((𝑇 ∨ 𝑈) ∨ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 class class class wbr 5078 ‘cfv 6430 (class class class)co 7268 Basecbs 16893 lecple 16950 joincjn 18010 Atomscatm 37256 HLchlt 37343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-proset 17994 df-poset 18012 df-lub 18045 df-glb 18046 df-join 18047 df-meet 18048 df-lat 18131 df-ats 37260 df-atl 37291 df-cvlat 37315 df-hlat 37344 |
This theorem is referenced by: dalem29 37694 dalem30 37695 dalem31N 37696 dalem32 37697 dalem33 37698 dalem34 37699 dalem35 37700 dalem36 37701 dalem37 37702 dalem40 37705 dalem46 37711 dalem47 37712 dalem58 37723 dalem59 37724 |
Copyright terms: Public domain | W3C validator |