| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dalemrotyz | Structured version Visualization version GIF version | ||
| Description: Lemma for dath 39760. Rotate triangles 𝑌 = 𝑃𝑄𝑅 and 𝑍 = 𝑆𝑇𝑈 to allow reuse of analogous proofs. (Contributed by NM, 19-Aug-2012.) |
| Ref | Expression |
|---|---|
| dalema.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
| dalemc.l | ⊢ ≤ = (le‘𝐾) |
| dalemc.j | ⊢ ∨ = (join‘𝐾) |
| dalemc.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| dalemrot.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
| dalemrot.z | ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) |
| Ref | Expression |
|---|---|
| dalemrotyz | ⊢ ((𝜑 ∧ 𝑌 = 𝑍) → ((𝑄 ∨ 𝑅) ∨ 𝑃) = ((𝑇 ∨ 𝑈) ∨ 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . 2 ⊢ ((𝜑 ∧ 𝑌 = 𝑍) → 𝑌 = 𝑍) | |
| 2 | dalemrot.y | . . . 4 ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) | |
| 3 | dalema.ph | . . . . 5 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | |
| 4 | dalemc.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
| 5 | dalemc.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 6 | 3, 4, 5 | dalemqrprot 39672 | . . . 4 ⊢ (𝜑 → ((𝑄 ∨ 𝑅) ∨ 𝑃) = ((𝑃 ∨ 𝑄) ∨ 𝑅)) |
| 7 | 2, 6 | eqtr4id 2790 | . . 3 ⊢ (𝜑 → 𝑌 = ((𝑄 ∨ 𝑅) ∨ 𝑃)) |
| 8 | 7 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑌 = 𝑍) → 𝑌 = ((𝑄 ∨ 𝑅) ∨ 𝑃)) |
| 9 | dalemrot.z | . . . 4 ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) | |
| 10 | 3 | dalemkehl 39647 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ HL) |
| 11 | 3 | dalemtea 39654 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ 𝐴) |
| 12 | 3 | dalemuea 39655 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝐴) |
| 13 | 3 | dalemsea 39653 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ 𝐴) |
| 14 | 4, 5 | hlatjrot 39396 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑇 ∨ 𝑈) ∨ 𝑆) = ((𝑆 ∨ 𝑇) ∨ 𝑈)) |
| 15 | 10, 11, 12, 13, 14 | syl13anc 1374 | . . . 4 ⊢ (𝜑 → ((𝑇 ∨ 𝑈) ∨ 𝑆) = ((𝑆 ∨ 𝑇) ∨ 𝑈)) |
| 16 | 9, 15 | eqtr4id 2790 | . . 3 ⊢ (𝜑 → 𝑍 = ((𝑇 ∨ 𝑈) ∨ 𝑆)) |
| 17 | 16 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑌 = 𝑍) → 𝑍 = ((𝑇 ∨ 𝑈) ∨ 𝑆)) |
| 18 | 1, 8, 17 | 3eqtr3d 2779 | 1 ⊢ ((𝜑 ∧ 𝑌 = 𝑍) → ((𝑄 ∨ 𝑅) ∨ 𝑃) = ((𝑇 ∨ 𝑈) ∨ 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 lecple 17283 joincjn 18328 Atomscatm 39286 HLchlt 39373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-proset 18311 df-poset 18330 df-lub 18361 df-glb 18362 df-join 18363 df-meet 18364 df-lat 18447 df-ats 39290 df-atl 39321 df-cvlat 39345 df-hlat 39374 |
| This theorem is referenced by: dalem29 39725 dalem30 39726 dalem31N 39727 dalem32 39728 dalem33 39729 dalem34 39730 dalem35 39731 dalem36 39732 dalem37 39733 dalem40 39736 dalem46 39742 dalem47 39743 dalem58 39754 dalem59 39755 |
| Copyright terms: Public domain | W3C validator |