Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalemrotyz Structured version   Visualization version   GIF version

Theorem dalemrotyz 39767
Description: Lemma for dath 39845. Rotate triangles 𝑌 = 𝑃𝑄𝑅 and 𝑍 = 𝑆𝑇𝑈 to allow reuse of analogous proofs. (Contributed by NM, 19-Aug-2012.)
Hypotheses
Ref Expression
dalema.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalemc.l = (le‘𝐾)
dalemc.j = (join‘𝐾)
dalemc.a 𝐴 = (Atoms‘𝐾)
dalemrot.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalemrot.z 𝑍 = ((𝑆 𝑇) 𝑈)
Assertion
Ref Expression
dalemrotyz ((𝜑𝑌 = 𝑍) → ((𝑄 𝑅) 𝑃) = ((𝑇 𝑈) 𝑆))

Proof of Theorem dalemrotyz
StepHypRef Expression
1 simpr 484 . 2 ((𝜑𝑌 = 𝑍) → 𝑌 = 𝑍)
2 dalemrot.y . . . 4 𝑌 = ((𝑃 𝑄) 𝑅)
3 dalema.ph . . . . 5 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
4 dalemc.j . . . . 5 = (join‘𝐾)
5 dalemc.a . . . . 5 𝐴 = (Atoms‘𝐾)
63, 4, 5dalemqrprot 39757 . . . 4 (𝜑 → ((𝑄 𝑅) 𝑃) = ((𝑃 𝑄) 𝑅))
72, 6eqtr4id 2785 . . 3 (𝜑𝑌 = ((𝑄 𝑅) 𝑃))
87adantr 480 . 2 ((𝜑𝑌 = 𝑍) → 𝑌 = ((𝑄 𝑅) 𝑃))
9 dalemrot.z . . . 4 𝑍 = ((𝑆 𝑇) 𝑈)
103dalemkehl 39732 . . . . 5 (𝜑𝐾 ∈ HL)
113dalemtea 39739 . . . . 5 (𝜑𝑇𝐴)
123dalemuea 39740 . . . . 5 (𝜑𝑈𝐴)
133dalemsea 39738 . . . . 5 (𝜑𝑆𝐴)
144, 5hlatjrot 39482 . . . . 5 ((𝐾 ∈ HL ∧ (𝑇𝐴𝑈𝐴𝑆𝐴)) → ((𝑇 𝑈) 𝑆) = ((𝑆 𝑇) 𝑈))
1510, 11, 12, 13, 14syl13anc 1374 . . . 4 (𝜑 → ((𝑇 𝑈) 𝑆) = ((𝑆 𝑇) 𝑈))
169, 15eqtr4id 2785 . . 3 (𝜑𝑍 = ((𝑇 𝑈) 𝑆))
1716adantr 480 . 2 ((𝜑𝑌 = 𝑍) → 𝑍 = ((𝑇 𝑈) 𝑆))
181, 8, 173eqtr3d 2774 1 ((𝜑𝑌 = 𝑍) → ((𝑄 𝑅) 𝑃) = ((𝑇 𝑈) 𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111   class class class wbr 5089  cfv 6481  (class class class)co 7346  Basecbs 17120  lecple 17168  joincjn 18217  Atomscatm 39372  HLchlt 39459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-proset 18200  df-poset 18219  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-lat 18338  df-ats 39376  df-atl 39407  df-cvlat 39431  df-hlat 39460
This theorem is referenced by:  dalem29  39810  dalem30  39811  dalem31N  39812  dalem32  39813  dalem33  39814  dalem34  39815  dalem35  39816  dalem36  39817  dalem37  39818  dalem40  39821  dalem46  39827  dalem47  39828  dalem58  39839  dalem59  39840
  Copyright terms: Public domain W3C validator