![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dalemrotyz | Structured version Visualization version GIF version |
Description: Lemma for dath 39336. Rotate triangles 𝑌 = 𝑃𝑄𝑅 and 𝑍 = 𝑆𝑇𝑈 to allow reuse of analogous proofs. (Contributed by NM, 19-Aug-2012.) |
Ref | Expression |
---|---|
dalema.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
dalemc.l | ⊢ ≤ = (le‘𝐾) |
dalemc.j | ⊢ ∨ = (join‘𝐾) |
dalemc.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dalemrot.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
dalemrot.z | ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) |
Ref | Expression |
---|---|
dalemrotyz | ⊢ ((𝜑 ∧ 𝑌 = 𝑍) → ((𝑄 ∨ 𝑅) ∨ 𝑃) = ((𝑇 ∨ 𝑈) ∨ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 483 | . 2 ⊢ ((𝜑 ∧ 𝑌 = 𝑍) → 𝑌 = 𝑍) | |
2 | dalemrot.y | . . . 4 ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) | |
3 | dalema.ph | . . . . 5 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | |
4 | dalemc.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
5 | dalemc.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | 3, 4, 5 | dalemqrprot 39248 | . . . 4 ⊢ (𝜑 → ((𝑄 ∨ 𝑅) ∨ 𝑃) = ((𝑃 ∨ 𝑄) ∨ 𝑅)) |
7 | 2, 6 | eqtr4id 2784 | . . 3 ⊢ (𝜑 → 𝑌 = ((𝑄 ∨ 𝑅) ∨ 𝑃)) |
8 | 7 | adantr 479 | . 2 ⊢ ((𝜑 ∧ 𝑌 = 𝑍) → 𝑌 = ((𝑄 ∨ 𝑅) ∨ 𝑃)) |
9 | dalemrot.z | . . . 4 ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) | |
10 | 3 | dalemkehl 39223 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ HL) |
11 | 3 | dalemtea 39230 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ 𝐴) |
12 | 3 | dalemuea 39231 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝐴) |
13 | 3 | dalemsea 39229 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ 𝐴) |
14 | 4, 5 | hlatjrot 38972 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑇 ∨ 𝑈) ∨ 𝑆) = ((𝑆 ∨ 𝑇) ∨ 𝑈)) |
15 | 10, 11, 12, 13, 14 | syl13anc 1369 | . . . 4 ⊢ (𝜑 → ((𝑇 ∨ 𝑈) ∨ 𝑆) = ((𝑆 ∨ 𝑇) ∨ 𝑈)) |
16 | 9, 15 | eqtr4id 2784 | . . 3 ⊢ (𝜑 → 𝑍 = ((𝑇 ∨ 𝑈) ∨ 𝑆)) |
17 | 16 | adantr 479 | . 2 ⊢ ((𝜑 ∧ 𝑌 = 𝑍) → 𝑍 = ((𝑇 ∨ 𝑈) ∨ 𝑆)) |
18 | 1, 8, 17 | 3eqtr3d 2773 | 1 ⊢ ((𝜑 ∧ 𝑌 = 𝑍) → ((𝑄 ∨ 𝑅) ∨ 𝑃) = ((𝑇 ∨ 𝑈) ∨ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 class class class wbr 5149 ‘cfv 6549 (class class class)co 7419 Basecbs 17183 lecple 17243 joincjn 18306 Atomscatm 38862 HLchlt 38949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-proset 18290 df-poset 18308 df-lub 18341 df-glb 18342 df-join 18343 df-meet 18344 df-lat 18427 df-ats 38866 df-atl 38897 df-cvlat 38921 df-hlat 38950 |
This theorem is referenced by: dalem29 39301 dalem30 39302 dalem31N 39303 dalem32 39304 dalem33 39305 dalem34 39306 dalem35 39307 dalem36 39308 dalem37 39309 dalem40 39312 dalem46 39318 dalem47 39319 dalem58 39330 dalem59 39331 |
Copyright terms: Public domain | W3C validator |