![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dalemrotyz | Structured version Visualization version GIF version |
Description: Lemma for dath 39120. Rotate triangles π = πππ and π = πππ to allow reuse of analogous proofs. (Contributed by NM, 19-Aug-2012.) |
Ref | Expression |
---|---|
dalema.ph | β’ (π β (((πΎ β HL β§ πΆ β (BaseβπΎ)) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (π β π β§ π β π) β§ ((Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π ) β§ Β¬ πΆ β€ (π β¨ π)) β§ (Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π)) β§ (πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π))))) |
dalemc.l | β’ β€ = (leβπΎ) |
dalemc.j | β’ β¨ = (joinβπΎ) |
dalemc.a | β’ π΄ = (AtomsβπΎ) |
dalemrot.y | β’ π = ((π β¨ π) β¨ π ) |
dalemrot.z | β’ π = ((π β¨ π) β¨ π) |
Ref | Expression |
---|---|
dalemrotyz | β’ ((π β§ π = π) β ((π β¨ π ) β¨ π) = ((π β¨ π) β¨ π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . 2 β’ ((π β§ π = π) β π = π) | |
2 | dalemrot.y | . . . 4 β’ π = ((π β¨ π) β¨ π ) | |
3 | dalema.ph | . . . . 5 β’ (π β (((πΎ β HL β§ πΆ β (BaseβπΎ)) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (π β π β§ π β π) β§ ((Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π ) β§ Β¬ πΆ β€ (π β¨ π)) β§ (Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π)) β§ (πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π))))) | |
4 | dalemc.j | . . . . 5 β’ β¨ = (joinβπΎ) | |
5 | dalemc.a | . . . . 5 β’ π΄ = (AtomsβπΎ) | |
6 | 3, 4, 5 | dalemqrprot 39032 | . . . 4 β’ (π β ((π β¨ π ) β¨ π) = ((π β¨ π) β¨ π )) |
7 | 2, 6 | eqtr4id 2785 | . . 3 β’ (π β π = ((π β¨ π ) β¨ π)) |
8 | 7 | adantr 480 | . 2 β’ ((π β§ π = π) β π = ((π β¨ π ) β¨ π)) |
9 | dalemrot.z | . . . 4 β’ π = ((π β¨ π) β¨ π) | |
10 | 3 | dalemkehl 39007 | . . . . 5 β’ (π β πΎ β HL) |
11 | 3 | dalemtea 39014 | . . . . 5 β’ (π β π β π΄) |
12 | 3 | dalemuea 39015 | . . . . 5 β’ (π β π β π΄) |
13 | 3 | dalemsea 39013 | . . . . 5 β’ (π β π β π΄) |
14 | 4, 5 | hlatjrot 38756 | . . . . 5 β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β ((π β¨ π) β¨ π) = ((π β¨ π) β¨ π)) |
15 | 10, 11, 12, 13, 14 | syl13anc 1369 | . . . 4 β’ (π β ((π β¨ π) β¨ π) = ((π β¨ π) β¨ π)) |
16 | 9, 15 | eqtr4id 2785 | . . 3 β’ (π β π = ((π β¨ π) β¨ π)) |
17 | 16 | adantr 480 | . 2 β’ ((π β§ π = π) β π = ((π β¨ π) β¨ π)) |
18 | 1, 8, 17 | 3eqtr3d 2774 | 1 β’ ((π β§ π = π) β ((π β¨ π ) β¨ π) = ((π β¨ π) β¨ π)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 395 β§ w3a 1084 = wceq 1533 β wcel 2098 class class class wbr 5141 βcfv 6537 (class class class)co 7405 Basecbs 17153 lecple 17213 joincjn 18276 Atomscatm 38646 HLchlt 38733 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-proset 18260 df-poset 18278 df-lub 18311 df-glb 18312 df-join 18313 df-meet 18314 df-lat 18397 df-ats 38650 df-atl 38681 df-cvlat 38705 df-hlat 38734 |
This theorem is referenced by: dalem29 39085 dalem30 39086 dalem31N 39087 dalem32 39088 dalem33 39089 dalem34 39090 dalem35 39091 dalem36 39092 dalem37 39093 dalem40 39096 dalem46 39102 dalem47 39103 dalem58 39114 dalem59 39115 |
Copyright terms: Public domain | W3C validator |