Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalemrotyz Structured version   Visualization version   GIF version

Theorem dalemrotyz 37599
Description: Lemma for dath 37677. Rotate triangles 𝑌 = 𝑃𝑄𝑅 and 𝑍 = 𝑆𝑇𝑈 to allow reuse of analogous proofs. (Contributed by NM, 19-Aug-2012.)
Hypotheses
Ref Expression
dalema.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalemc.l = (le‘𝐾)
dalemc.j = (join‘𝐾)
dalemc.a 𝐴 = (Atoms‘𝐾)
dalemrot.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalemrot.z 𝑍 = ((𝑆 𝑇) 𝑈)
Assertion
Ref Expression
dalemrotyz ((𝜑𝑌 = 𝑍) → ((𝑄 𝑅) 𝑃) = ((𝑇 𝑈) 𝑆))

Proof of Theorem dalemrotyz
StepHypRef Expression
1 simpr 484 . 2 ((𝜑𝑌 = 𝑍) → 𝑌 = 𝑍)
2 dalemrot.y . . . 4 𝑌 = ((𝑃 𝑄) 𝑅)
3 dalema.ph . . . . 5 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
4 dalemc.j . . . . 5 = (join‘𝐾)
5 dalemc.a . . . . 5 𝐴 = (Atoms‘𝐾)
63, 4, 5dalemqrprot 37589 . . . 4 (𝜑 → ((𝑄 𝑅) 𝑃) = ((𝑃 𝑄) 𝑅))
72, 6eqtr4id 2798 . . 3 (𝜑𝑌 = ((𝑄 𝑅) 𝑃))
87adantr 480 . 2 ((𝜑𝑌 = 𝑍) → 𝑌 = ((𝑄 𝑅) 𝑃))
9 dalemrot.z . . . 4 𝑍 = ((𝑆 𝑇) 𝑈)
103dalemkehl 37564 . . . . 5 (𝜑𝐾 ∈ HL)
113dalemtea 37571 . . . . 5 (𝜑𝑇𝐴)
123dalemuea 37572 . . . . 5 (𝜑𝑈𝐴)
133dalemsea 37570 . . . . 5 (𝜑𝑆𝐴)
144, 5hlatjrot 37314 . . . . 5 ((𝐾 ∈ HL ∧ (𝑇𝐴𝑈𝐴𝑆𝐴)) → ((𝑇 𝑈) 𝑆) = ((𝑆 𝑇) 𝑈))
1510, 11, 12, 13, 14syl13anc 1370 . . . 4 (𝜑 → ((𝑇 𝑈) 𝑆) = ((𝑆 𝑇) 𝑈))
169, 15eqtr4id 2798 . . 3 (𝜑𝑍 = ((𝑇 𝑈) 𝑆))
1716adantr 480 . 2 ((𝜑𝑌 = 𝑍) → 𝑍 = ((𝑇 𝑈) 𝑆))
181, 8, 173eqtr3d 2786 1 ((𝜑𝑌 = 𝑍) → ((𝑄 𝑅) 𝑃) = ((𝑇 𝑈) 𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  lecple 16895  joincjn 17944  Atomscatm 37204  HLchlt 37291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-proset 17928  df-poset 17946  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-lat 18065  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292
This theorem is referenced by:  dalem29  37642  dalem30  37643  dalem31N  37644  dalem32  37645  dalem33  37646  dalem34  37647  dalem35  37648  dalem36  37649  dalem37  37650  dalem40  37653  dalem46  37659  dalem47  37660  dalem58  37671  dalem59  37672
  Copyright terms: Public domain W3C validator