Proof of Theorem dalem12
Step | Hyp | Ref
| Expression |
1 | | dalema.ph |
. . . 4
⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
2 | | dalemc.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
3 | | dalemc.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
4 | | dalemc.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
5 | | dalem12.y |
. . . 4
⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
6 | | dalem12.z |
. . . 4
⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) |
7 | 1, 2, 3, 4, 5, 6 | dalemrot 37598 |
. . 3
⊢ (𝜑 → (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ (𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ (((𝑄 ∨ 𝑅) ∨ 𝑃) ∈ 𝑂 ∧ ((𝑇 ∨ 𝑈) ∨ 𝑆) ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃) ∧ ¬ 𝐶 ≤ (𝑃 ∨ 𝑄)) ∧ (¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆) ∧ ¬ 𝐶 ≤ (𝑆 ∨ 𝑇)) ∧ (𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈) ∧ 𝐶 ≤ (𝑃 ∨ 𝑆))))) |
8 | | biid 260 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ (𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ (((𝑄 ∨ 𝑅) ∨ 𝑃) ∈ 𝑂 ∧ ((𝑇 ∨ 𝑈) ∨ 𝑆) ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃) ∧ ¬ 𝐶 ≤ (𝑃 ∨ 𝑄)) ∧ (¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆) ∧ ¬ 𝐶 ≤ (𝑆 ∨ 𝑇)) ∧ (𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈) ∧ 𝐶 ≤ (𝑃 ∨ 𝑆)))) ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ (𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ (((𝑄 ∨ 𝑅) ∨ 𝑃) ∈ 𝑂 ∧ ((𝑇 ∨ 𝑈) ∨ 𝑆) ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃) ∧ ¬ 𝐶 ≤ (𝑃 ∨ 𝑄)) ∧ (¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆) ∧ ¬ 𝐶 ≤ (𝑆 ∨ 𝑇)) ∧ (𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈) ∧ 𝐶 ≤ (𝑃 ∨ 𝑆))))) |
9 | | dalem12.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
10 | | dalem12.o |
. . . 4
⊢ 𝑂 = (LPlanes‘𝐾) |
11 | | eqid 2738 |
. . . 4
⊢ ((𝑄 ∨ 𝑅) ∨ 𝑃) = ((𝑄 ∨ 𝑅) ∨ 𝑃) |
12 | | eqid 2738 |
. . . 4
⊢ ((𝑇 ∨ 𝑈) ∨ 𝑆) = ((𝑇 ∨ 𝑈) ∨ 𝑆) |
13 | | eqid 2738 |
. . . 4
⊢ (((𝑄 ∨ 𝑅) ∨ 𝑃) ∧ ((𝑇 ∨ 𝑈) ∨ 𝑆)) = (((𝑄 ∨ 𝑅) ∨ 𝑃) ∧ ((𝑇 ∨ 𝑈) ∨ 𝑆)) |
14 | | dalem12.f |
. . . 4
⊢ 𝐹 = ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)) |
15 | 8, 2, 3, 4, 9, 10,
11, 12, 13, 14 | dalem11 37615 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ (𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ (((𝑄 ∨ 𝑅) ∨ 𝑃) ∈ 𝑂 ∧ ((𝑇 ∨ 𝑈) ∨ 𝑆) ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃) ∧ ¬ 𝐶 ≤ (𝑃 ∨ 𝑄)) ∧ (¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆) ∧ ¬ 𝐶 ≤ (𝑆 ∨ 𝑇)) ∧ (𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈) ∧ 𝐶 ≤ (𝑃 ∨ 𝑆)))) → 𝐹 ≤ (((𝑄 ∨ 𝑅) ∨ 𝑃) ∧ ((𝑇 ∨ 𝑈) ∨ 𝑆))) |
16 | 7, 15 | syl 17 |
. 2
⊢ (𝜑 → 𝐹 ≤ (((𝑄 ∨ 𝑅) ∨ 𝑃) ∧ ((𝑇 ∨ 𝑈) ∨ 𝑆))) |
17 | | dalem12.x |
. . 3
⊢ 𝑋 = (𝑌 ∧ 𝑍) |
18 | 1, 3, 4 | dalemqrprot 37589 |
. . . . 5
⊢ (𝜑 → ((𝑄 ∨ 𝑅) ∨ 𝑃) = ((𝑃 ∨ 𝑄) ∨ 𝑅)) |
19 | 5, 18 | eqtr4id 2798 |
. . . 4
⊢ (𝜑 → 𝑌 = ((𝑄 ∨ 𝑅) ∨ 𝑃)) |
20 | 1 | dalemkehl 37564 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ HL) |
21 | 1 | dalemtea 37571 |
. . . . . 6
⊢ (𝜑 → 𝑇 ∈ 𝐴) |
22 | 1 | dalemuea 37572 |
. . . . . 6
⊢ (𝜑 → 𝑈 ∈ 𝐴) |
23 | 1 | dalemsea 37570 |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ 𝐴) |
24 | 3, 4 | hlatjrot 37314 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑇 ∨ 𝑈) ∨ 𝑆) = ((𝑆 ∨ 𝑇) ∨ 𝑈)) |
25 | 20, 21, 22, 23, 24 | syl13anc 1370 |
. . . . 5
⊢ (𝜑 → ((𝑇 ∨ 𝑈) ∨ 𝑆) = ((𝑆 ∨ 𝑇) ∨ 𝑈)) |
26 | 6, 25 | eqtr4id 2798 |
. . . 4
⊢ (𝜑 → 𝑍 = ((𝑇 ∨ 𝑈) ∨ 𝑆)) |
27 | 19, 26 | oveq12d 7273 |
. . 3
⊢ (𝜑 → (𝑌 ∧ 𝑍) = (((𝑄 ∨ 𝑅) ∨ 𝑃) ∧ ((𝑇 ∨ 𝑈) ∨ 𝑆))) |
28 | 17, 27 | syl5eq 2791 |
. 2
⊢ (𝜑 → 𝑋 = (((𝑄 ∨ 𝑅) ∨ 𝑃) ∧ ((𝑇 ∨ 𝑈) ∨ 𝑆))) |
29 | 16, 28 | breqtrrd 5098 |
1
⊢ (𝜑 → 𝐹 ≤ 𝑋) |