Proof of Theorem dalem58
Step | Hyp | Ref
| Expression |
1 | | dalem.ph |
. . . . 5
⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
2 | | dalem.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
3 | | dalem.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
4 | | dalem.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
5 | | dalem58.y |
. . . . 5
⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
6 | | dalem58.z |
. . . . 5
⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) |
7 | 1, 2, 3, 4, 5, 6 | dalemrot 37650 |
. . . 4
⊢ (𝜑 → (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ (𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ (((𝑄 ∨ 𝑅) ∨ 𝑃) ∈ 𝑂 ∧ ((𝑇 ∨ 𝑈) ∨ 𝑆) ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃) ∧ ¬ 𝐶 ≤ (𝑃 ∨ 𝑄)) ∧ (¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆) ∧ ¬ 𝐶 ≤ (𝑆 ∨ 𝑇)) ∧ (𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈) ∧ 𝐶 ≤ (𝑃 ∨ 𝑆))))) |
8 | 7 | 3ad2ant1 1131 |
. . 3
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ (𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ (((𝑄 ∨ 𝑅) ∨ 𝑃) ∈ 𝑂 ∧ ((𝑇 ∨ 𝑈) ∨ 𝑆) ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃) ∧ ¬ 𝐶 ≤ (𝑃 ∨ 𝑄)) ∧ (¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆) ∧ ¬ 𝐶 ≤ (𝑆 ∨ 𝑇)) ∧ (𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈) ∧ 𝐶 ≤ (𝑃 ∨ 𝑆))))) |
9 | 1, 2, 3, 4, 5, 6 | dalemrotyz 37651 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 = 𝑍) → ((𝑄 ∨ 𝑅) ∨ 𝑃) = ((𝑇 ∨ 𝑈) ∨ 𝑆)) |
10 | 9 | 3adant3 1130 |
. . 3
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((𝑄 ∨ 𝑅) ∨ 𝑃) = ((𝑇 ∨ 𝑈) ∨ 𝑆)) |
11 | | dalem.ps |
. . . . 5
⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) |
12 | 1, 2, 3, 4, 11, 5 | dalemrotps 37684 |
. . . 4
⊢ ((𝜑 ∧ 𝜓) → ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃) ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃) ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) |
13 | 12 | 3adant2 1129 |
. . 3
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃) ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃) ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) |
14 | | biid 260 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ (𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ (((𝑄 ∨ 𝑅) ∨ 𝑃) ∈ 𝑂 ∧ ((𝑇 ∨ 𝑈) ∨ 𝑆) ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃) ∧ ¬ 𝐶 ≤ (𝑃 ∨ 𝑄)) ∧ (¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆) ∧ ¬ 𝐶 ≤ (𝑆 ∨ 𝑇)) ∧ (𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈) ∧ 𝐶 ≤ (𝑃 ∨ 𝑆)))) ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ (𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ (((𝑄 ∨ 𝑅) ∨ 𝑃) ∈ 𝑂 ∧ ((𝑇 ∨ 𝑈) ∨ 𝑆) ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃) ∧ ¬ 𝐶 ≤ (𝑃 ∨ 𝑄)) ∧ (¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆) ∧ ¬ 𝐶 ≤ (𝑆 ∨ 𝑇)) ∧ (𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈) ∧ 𝐶 ≤ (𝑃 ∨ 𝑆))))) |
15 | | biid 260 |
. . . 4
⊢ (((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃) ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃) ∧ 𝐶 ≤ (𝑐 ∨ 𝑑))) ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃) ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃) ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) |
16 | | dalem58.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
17 | | dalem58.o |
. . . 4
⊢ 𝑂 = (LPlanes‘𝐾) |
18 | | eqid 2739 |
. . . 4
⊢ ((𝑄 ∨ 𝑅) ∨ 𝑃) = ((𝑄 ∨ 𝑅) ∨ 𝑃) |
19 | | eqid 2739 |
. . . 4
⊢ ((𝑇 ∨ 𝑈) ∨ 𝑆) = ((𝑇 ∨ 𝑈) ∨ 𝑆) |
20 | | dalem58.e |
. . . 4
⊢ 𝐸 = ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) |
21 | | dalem58.h |
. . . 4
⊢ 𝐻 = ((𝑐 ∨ 𝑄) ∧ (𝑑 ∨ 𝑇)) |
22 | | dalem58.i |
. . . 4
⊢ 𝐼 = ((𝑐 ∨ 𝑅) ∧ (𝑑 ∨ 𝑈)) |
23 | | dalem58.g |
. . . 4
⊢ 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) |
24 | | eqid 2739 |
. . . 4
⊢ (((𝐻 ∨ 𝐼) ∨ 𝐺) ∧ ((𝑄 ∨ 𝑅) ∨ 𝑃)) = (((𝐻 ∨ 𝐼) ∨ 𝐺) ∧ ((𝑄 ∨ 𝑅) ∨ 𝑃)) |
25 | 14, 2, 3, 4, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 | dalem57 37722 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝐶 ∈
(Base‘𝐾)) ∧
(𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ (𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ (((𝑄 ∨ 𝑅) ∨ 𝑃) ∈ 𝑂 ∧ ((𝑇 ∨ 𝑈) ∨ 𝑆) ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃) ∧ ¬ 𝐶 ≤ (𝑃 ∨ 𝑄)) ∧ (¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆) ∧ ¬ 𝐶 ≤ (𝑆 ∨ 𝑇)) ∧ (𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈) ∧ 𝐶 ≤ (𝑃 ∨ 𝑆)))) ∧ ((𝑄 ∨ 𝑅) ∨ 𝑃) = ((𝑇 ∨ 𝑈) ∨ 𝑆) ∧ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃) ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃) ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) → 𝐸 ≤ (((𝐻 ∨ 𝐼) ∨ 𝐺) ∧ ((𝑄 ∨ 𝑅) ∨ 𝑃))) |
26 | 8, 10, 13, 25 | syl3anc 1369 |
. 2
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐸 ≤ (((𝐻 ∨ 𝐼) ∨ 𝐺) ∧ ((𝑄 ∨ 𝑅) ∨ 𝑃))) |
27 | 1 | dalemkehl 37616 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ HL) |
28 | 27 | 3ad2ant1 1131 |
. . . . 5
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐾 ∈ HL) |
29 | 1, 2, 3, 4, 11, 16, 17, 5, 6, 21 | dalem29 37694 |
. . . . 5
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐻 ∈ 𝐴) |
30 | 1, 2, 3, 4, 11, 16, 17, 5, 6, 22 | dalem34 37699 |
. . . . 5
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐼 ∈ 𝐴) |
31 | 1, 2, 3, 4, 11, 16, 17, 5, 6, 23 | dalem23 37689 |
. . . . 5
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐺 ∈ 𝐴) |
32 | 3, 4 | hlatjrot 37366 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝐻 ∈ 𝐴 ∧ 𝐼 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴)) → ((𝐻 ∨ 𝐼) ∨ 𝐺) = ((𝐺 ∨ 𝐻) ∨ 𝐼)) |
33 | 28, 29, 30, 31, 32 | syl13anc 1370 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((𝐻 ∨ 𝐼) ∨ 𝐺) = ((𝐺 ∨ 𝐻) ∨ 𝐼)) |
34 | 1, 3, 4 | dalemqrprot 37641 |
. . . . . 6
⊢ (𝜑 → ((𝑄 ∨ 𝑅) ∨ 𝑃) = ((𝑃 ∨ 𝑄) ∨ 𝑅)) |
35 | 34, 5 | eqtr4di 2797 |
. . . . 5
⊢ (𝜑 → ((𝑄 ∨ 𝑅) ∨ 𝑃) = 𝑌) |
36 | 35 | 3ad2ant1 1131 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((𝑄 ∨ 𝑅) ∨ 𝑃) = 𝑌) |
37 | 33, 36 | oveq12d 7286 |
. . 3
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (((𝐻 ∨ 𝐼) ∨ 𝐺) ∧ ((𝑄 ∨ 𝑅) ∨ 𝑃)) = (((𝐺 ∨ 𝐻) ∨ 𝐼) ∧ 𝑌)) |
38 | | dalem58.b1 |
. . 3
⊢ 𝐵 = (((𝐺 ∨ 𝐻) ∨ 𝐼) ∧ 𝑌) |
39 | 37, 38 | eqtr4di 2797 |
. 2
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (((𝐻 ∨ 𝐼) ∨ 𝐺) ∧ ((𝑄 ∨ 𝑅) ∨ 𝑃)) = 𝐵) |
40 | 26, 39 | breqtrd 5104 |
1
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐸 ≤ 𝐵) |