Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem58 Structured version   Visualization version   GIF version

Theorem dalem58 39429
Description: Lemma for dath 39435. Analogue of dalem57 39428 for 𝐸. (Contributed by NM, 10-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalem58.m = (meet‘𝐾)
dalem58.o 𝑂 = (LPlanes‘𝐾)
dalem58.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem58.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem58.e 𝐸 = ((𝑄 𝑅) (𝑇 𝑈))
dalem58.g 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
dalem58.h 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
dalem58.i 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
dalem58.b1 𝐵 = (((𝐺 𝐻) 𝐼) 𝑌)
Assertion
Ref Expression
dalem58 ((𝜑𝑌 = 𝑍𝜓) → 𝐸 𝐵)

Proof of Theorem dalem58
StepHypRef Expression
1 dalem.ph . . . . 5 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
2 dalem.l . . . . 5 = (le‘𝐾)
3 dalem.j . . . . 5 = (join‘𝐾)
4 dalem.a . . . . 5 𝐴 = (Atoms‘𝐾)
5 dalem58.y . . . . 5 𝑌 = ((𝑃 𝑄) 𝑅)
6 dalem58.z . . . . 5 𝑍 = ((𝑆 𝑇) 𝑈)
71, 2, 3, 4, 5, 6dalemrot 39356 . . . 4 (𝜑 → (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑄𝐴𝑅𝐴𝑃𝐴) ∧ (𝑇𝐴𝑈𝐴𝑆𝐴)) ∧ (((𝑄 𝑅) 𝑃) ∈ 𝑂 ∧ ((𝑇 𝑈) 𝑆) ∈ 𝑂) ∧ ((¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃) ∧ ¬ 𝐶 (𝑃 𝑄)) ∧ (¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆) ∧ ¬ 𝐶 (𝑆 𝑇)) ∧ (𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈) ∧ 𝐶 (𝑃 𝑆)))))
873ad2ant1 1130 . . 3 ((𝜑𝑌 = 𝑍𝜓) → (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑄𝐴𝑅𝐴𝑃𝐴) ∧ (𝑇𝐴𝑈𝐴𝑆𝐴)) ∧ (((𝑄 𝑅) 𝑃) ∈ 𝑂 ∧ ((𝑇 𝑈) 𝑆) ∈ 𝑂) ∧ ((¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃) ∧ ¬ 𝐶 (𝑃 𝑄)) ∧ (¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆) ∧ ¬ 𝐶 (𝑆 𝑇)) ∧ (𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈) ∧ 𝐶 (𝑃 𝑆)))))
91, 2, 3, 4, 5, 6dalemrotyz 39357 . . . 4 ((𝜑𝑌 = 𝑍) → ((𝑄 𝑅) 𝑃) = ((𝑇 𝑈) 𝑆))
1093adant3 1129 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ((𝑄 𝑅) 𝑃) = ((𝑇 𝑈) 𝑆))
11 dalem.ps . . . . 5 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
121, 2, 3, 4, 11, 5dalemrotps 39390 . . . 4 ((𝜑𝜓) → ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 ((𝑄 𝑅) 𝑃) ∧ (𝑑𝑐 ∧ ¬ 𝑑 ((𝑄 𝑅) 𝑃) ∧ 𝐶 (𝑐 𝑑))))
13123adant2 1128 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 ((𝑄 𝑅) 𝑃) ∧ (𝑑𝑐 ∧ ¬ 𝑑 ((𝑄 𝑅) 𝑃) ∧ 𝐶 (𝑐 𝑑))))
14 biid 260 . . . 4 ((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑄𝐴𝑅𝐴𝑃𝐴) ∧ (𝑇𝐴𝑈𝐴𝑆𝐴)) ∧ (((𝑄 𝑅) 𝑃) ∈ 𝑂 ∧ ((𝑇 𝑈) 𝑆) ∈ 𝑂) ∧ ((¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃) ∧ ¬ 𝐶 (𝑃 𝑄)) ∧ (¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆) ∧ ¬ 𝐶 (𝑆 𝑇)) ∧ (𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈) ∧ 𝐶 (𝑃 𝑆)))) ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑄𝐴𝑅𝐴𝑃𝐴) ∧ (𝑇𝐴𝑈𝐴𝑆𝐴)) ∧ (((𝑄 𝑅) 𝑃) ∈ 𝑂 ∧ ((𝑇 𝑈) 𝑆) ∈ 𝑂) ∧ ((¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃) ∧ ¬ 𝐶 (𝑃 𝑄)) ∧ (¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆) ∧ ¬ 𝐶 (𝑆 𝑇)) ∧ (𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈) ∧ 𝐶 (𝑃 𝑆)))))
15 biid 260 . . . 4 (((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 ((𝑄 𝑅) 𝑃) ∧ (𝑑𝑐 ∧ ¬ 𝑑 ((𝑄 𝑅) 𝑃) ∧ 𝐶 (𝑐 𝑑))) ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 ((𝑄 𝑅) 𝑃) ∧ (𝑑𝑐 ∧ ¬ 𝑑 ((𝑄 𝑅) 𝑃) ∧ 𝐶 (𝑐 𝑑))))
16 dalem58.m . . . 4 = (meet‘𝐾)
17 dalem58.o . . . 4 𝑂 = (LPlanes‘𝐾)
18 eqid 2726 . . . 4 ((𝑄 𝑅) 𝑃) = ((𝑄 𝑅) 𝑃)
19 eqid 2726 . . . 4 ((𝑇 𝑈) 𝑆) = ((𝑇 𝑈) 𝑆)
20 dalem58.e . . . 4 𝐸 = ((𝑄 𝑅) (𝑇 𝑈))
21 dalem58.h . . . 4 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
22 dalem58.i . . . 4 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
23 dalem58.g . . . 4 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
24 eqid 2726 . . . 4 (((𝐻 𝐼) 𝐺) ((𝑄 𝑅) 𝑃)) = (((𝐻 𝐼) 𝐺) ((𝑄 𝑅) 𝑃))
2514, 2, 3, 4, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24dalem57 39428 . . 3 (((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑄𝐴𝑅𝐴𝑃𝐴) ∧ (𝑇𝐴𝑈𝐴𝑆𝐴)) ∧ (((𝑄 𝑅) 𝑃) ∈ 𝑂 ∧ ((𝑇 𝑈) 𝑆) ∈ 𝑂) ∧ ((¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃) ∧ ¬ 𝐶 (𝑃 𝑄)) ∧ (¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆) ∧ ¬ 𝐶 (𝑆 𝑇)) ∧ (𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈) ∧ 𝐶 (𝑃 𝑆)))) ∧ ((𝑄 𝑅) 𝑃) = ((𝑇 𝑈) 𝑆) ∧ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 ((𝑄 𝑅) 𝑃) ∧ (𝑑𝑐 ∧ ¬ 𝑑 ((𝑄 𝑅) 𝑃) ∧ 𝐶 (𝑐 𝑑)))) → 𝐸 (((𝐻 𝐼) 𝐺) ((𝑄 𝑅) 𝑃)))
268, 10, 13, 25syl3anc 1368 . 2 ((𝜑𝑌 = 𝑍𝜓) → 𝐸 (((𝐻 𝐼) 𝐺) ((𝑄 𝑅) 𝑃)))
271dalemkehl 39322 . . . . . 6 (𝜑𝐾 ∈ HL)
28273ad2ant1 1130 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ HL)
291, 2, 3, 4, 11, 16, 17, 5, 6, 21dalem29 39400 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝐻𝐴)
301, 2, 3, 4, 11, 16, 17, 5, 6, 22dalem34 39405 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝐼𝐴)
311, 2, 3, 4, 11, 16, 17, 5, 6, 23dalem23 39395 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝐺𝐴)
323, 4hlatjrot 39071 . . . . 5 ((𝐾 ∈ HL ∧ (𝐻𝐴𝐼𝐴𝐺𝐴)) → ((𝐻 𝐼) 𝐺) = ((𝐺 𝐻) 𝐼))
3328, 29, 30, 31, 32syl13anc 1369 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → ((𝐻 𝐼) 𝐺) = ((𝐺 𝐻) 𝐼))
341, 3, 4dalemqrprot 39347 . . . . . 6 (𝜑 → ((𝑄 𝑅) 𝑃) = ((𝑃 𝑄) 𝑅))
3534, 5eqtr4di 2784 . . . . 5 (𝜑 → ((𝑄 𝑅) 𝑃) = 𝑌)
36353ad2ant1 1130 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → ((𝑄 𝑅) 𝑃) = 𝑌)
3733, 36oveq12d 7442 . . 3 ((𝜑𝑌 = 𝑍𝜓) → (((𝐻 𝐼) 𝐺) ((𝑄 𝑅) 𝑃)) = (((𝐺 𝐻) 𝐼) 𝑌))
38 dalem58.b1 . . 3 𝐵 = (((𝐺 𝐻) 𝐼) 𝑌)
3937, 38eqtr4di 2784 . 2 ((𝜑𝑌 = 𝑍𝜓) → (((𝐻 𝐼) 𝐺) ((𝑄 𝑅) 𝑃)) = 𝐵)
4026, 39breqtrd 5179 1 ((𝜑𝑌 = 𝑍𝜓) → 𝐸 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  wne 2930   class class class wbr 5153  cfv 6554  (class class class)co 7424  Basecbs 17213  lecple 17273  joincjn 18336  meetcmee 18337  Atomscatm 38961  HLchlt 39048  LPlanesclpl 39191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-proset 18320  df-poset 18338  df-plt 18355  df-lub 18371  df-glb 18372  df-join 18373  df-meet 18374  df-p0 18450  df-lat 18457  df-clat 18524  df-oposet 38874  df-ol 38876  df-oml 38877  df-covers 38964  df-ats 38965  df-atl 38996  df-cvlat 39020  df-hlat 39049  df-llines 39197  df-lplanes 39198  df-lvols 39199
This theorem is referenced by:  dalem59  39430  dalem60  39431
  Copyright terms: Public domain W3C validator