Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem42 Structured version   Visualization version   GIF version

Theorem dalem42 37954
Description: Lemma for dath 37976. Auxiliary atoms 𝐺𝐻𝐼 form a plane. (Contributed by NM, 4-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalem38.m = (meet‘𝐾)
dalem38.o 𝑂 = (LPlanes‘𝐾)
dalem38.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem38.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem38.g 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
dalem38.h 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
dalem38.i 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
Assertion
Ref Expression
dalem42 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐼) ∈ 𝑂)

Proof of Theorem dalem42
StepHypRef Expression
1 dalem.ph . . . 4 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
21dalemkehl 37863 . . 3 (𝜑𝐾 ∈ HL)
323ad2ant1 1132 . 2 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ HL)
4 dalem.l . . 3 = (le‘𝐾)
5 dalem.j . . 3 = (join‘𝐾)
6 dalem.a . . 3 𝐴 = (Atoms‘𝐾)
7 dalem.ps . . 3 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
8 dalem38.m . . 3 = (meet‘𝐾)
9 dalem38.o . . 3 𝑂 = (LPlanes‘𝐾)
10 dalem38.y . . 3 𝑌 = ((𝑃 𝑄) 𝑅)
11 dalem38.z . . 3 𝑍 = ((𝑆 𝑇) 𝑈)
12 dalem38.g . . 3 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
131, 4, 5, 6, 7, 8, 9, 10, 11, 12dalem23 37936 . 2 ((𝜑𝑌 = 𝑍𝜓) → 𝐺𝐴)
14 dalem38.h . . 3 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
151, 4, 5, 6, 7, 8, 9, 10, 11, 14dalem29 37941 . 2 ((𝜑𝑌 = 𝑍𝜓) → 𝐻𝐴)
16 dalem38.i . . 3 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
171, 4, 5, 6, 7, 8, 9, 10, 11, 16dalem34 37946 . 2 ((𝜑𝑌 = 𝑍𝜓) → 𝐼𝐴)
181, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16dalem41 37953 . 2 ((𝜑𝑌 = 𝑍𝜓) → 𝐺𝐻)
191, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16dalem40 37952 . 2 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝐼 (𝐺 𝐻))
204, 5, 6, 9lplni2 37777 . 2 ((𝐾 ∈ HL ∧ (𝐺𝐴𝐻𝐴𝐼𝐴) ∧ (𝐺𝐻 ∧ ¬ 𝐼 (𝐺 𝐻))) → ((𝐺 𝐻) 𝐼) ∈ 𝑂)
213, 13, 15, 17, 18, 19, 20syl132anc 1387 1 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐼) ∈ 𝑂)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  wne 2940   class class class wbr 5086  cfv 6465  (class class class)co 7316  Basecbs 16986  lecple 17043  joincjn 18103  meetcmee 18104  Atomscatm 37502  HLchlt 37589  LPlanesclpl 37732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5223  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5170  df-id 5506  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-riota 7273  df-ov 7319  df-oprab 7320  df-proset 18087  df-poset 18105  df-plt 18122  df-lub 18138  df-glb 18139  df-join 18140  df-meet 18141  df-p0 18217  df-lat 18224  df-clat 18291  df-oposet 37415  df-ol 37417  df-oml 37418  df-covers 37505  df-ats 37506  df-atl 37537  df-cvlat 37561  df-hlat 37590  df-llines 37738  df-lplanes 37739  df-lvols 37740
This theorem is referenced by:  dalem44  37956  dalem51  37963  dalem52  37964  dalem55  37967
  Copyright terms: Public domain W3C validator