Proof of Theorem dalem60
Step | Hyp | Ref
| Expression |
1 | | dalem.ph |
. . . 4
⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
2 | | dalem.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
3 | | dalem.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
4 | | dalem.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
5 | | dalem.ps |
. . . 4
⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) |
6 | | dalem60.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
7 | | dalem60.o |
. . . 4
⊢ 𝑂 = (LPlanes‘𝐾) |
8 | | dalem60.y |
. . . 4
⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
9 | | dalem60.z |
. . . 4
⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) |
10 | | dalem60.d |
. . . 4
⊢ 𝐷 = ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) |
11 | | dalem60.g |
. . . 4
⊢ 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) |
12 | | dalem60.h |
. . . 4
⊢ 𝐻 = ((𝑐 ∨ 𝑄) ∧ (𝑑 ∨ 𝑇)) |
13 | | dalem60.i |
. . . 4
⊢ 𝐼 = ((𝑐 ∨ 𝑅) ∧ (𝑑 ∨ 𝑈)) |
14 | | dalem60.b1 |
. . . 4
⊢ 𝐵 = (((𝐺 ∨ 𝐻) ∨ 𝐼) ∧ 𝑌) |
15 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14 | dalem57 37670 |
. . 3
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐷 ≤ 𝐵) |
16 | | dalem60.e |
. . . 4
⊢ 𝐸 = ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) |
17 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 16,
11, 12, 13, 14 | dalem58 37671 |
. . 3
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐸 ≤ 𝐵) |
18 | 1 | dalemkelat 37565 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ Lat) |
19 | 18 | 3ad2ant1 1131 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐾 ∈ Lat) |
20 | 1, 2, 3, 4, 6, 7, 8, 9, 10 | dalemdea 37603 |
. . . . . 6
⊢ (𝜑 → 𝐷 ∈ 𝐴) |
21 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝐾) =
(Base‘𝐾) |
22 | 21, 4 | atbase 37230 |
. . . . . 6
⊢ (𝐷 ∈ 𝐴 → 𝐷 ∈ (Base‘𝐾)) |
23 | 20, 22 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐷 ∈ (Base‘𝐾)) |
24 | 23 | 3ad2ant1 1131 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐷 ∈ (Base‘𝐾)) |
25 | 1, 2, 3, 4, 6, 7, 8, 9, 16 | dalemeea 37604 |
. . . . . 6
⊢ (𝜑 → 𝐸 ∈ 𝐴) |
26 | 21, 4 | atbase 37230 |
. . . . . 6
⊢ (𝐸 ∈ 𝐴 → 𝐸 ∈ (Base‘𝐾)) |
27 | 25, 26 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐸 ∈ (Base‘𝐾)) |
28 | 27 | 3ad2ant1 1131 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐸 ∈ (Base‘𝐾)) |
29 | | eqid 2738 |
. . . . . 6
⊢
(LLines‘𝐾) =
(LLines‘𝐾) |
30 | 1, 2, 3, 4, 5, 6, 29, 7, 8, 9,
11, 12, 13, 14 | dalem53 37666 |
. . . . 5
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐵 ∈ (LLines‘𝐾)) |
31 | 21, 29 | llnbase 37450 |
. . . . 5
⊢ (𝐵 ∈ (LLines‘𝐾) → 𝐵 ∈ (Base‘𝐾)) |
32 | 30, 31 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐵 ∈ (Base‘𝐾)) |
33 | 21, 2, 3 | latjle12 18083 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝐷 ∈ (Base‘𝐾) ∧ 𝐸 ∈ (Base‘𝐾) ∧ 𝐵 ∈ (Base‘𝐾))) → ((𝐷 ≤ 𝐵 ∧ 𝐸 ≤ 𝐵) ↔ (𝐷 ∨ 𝐸) ≤ 𝐵)) |
34 | 19, 24, 28, 32, 33 | syl13anc 1370 |
. . 3
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((𝐷 ≤ 𝐵 ∧ 𝐸 ≤ 𝐵) ↔ (𝐷 ∨ 𝐸) ≤ 𝐵)) |
35 | 15, 17, 34 | mpbi2and 708 |
. 2
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝐷 ∨ 𝐸) ≤ 𝐵) |
36 | 1 | dalemkehl 37564 |
. . . 4
⊢ (𝜑 → 𝐾 ∈ HL) |
37 | 36 | 3ad2ant1 1131 |
. . 3
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐾 ∈ HL) |
38 | 1, 2, 3, 4, 6, 7, 8, 9, 10, 16 | dalemdnee 37607 |
. . . . 5
⊢ (𝜑 → 𝐷 ≠ 𝐸) |
39 | 3, 4, 29 | llni2 37453 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝐷 ∈ 𝐴 ∧ 𝐸 ∈ 𝐴) ∧ 𝐷 ≠ 𝐸) → (𝐷 ∨ 𝐸) ∈ (LLines‘𝐾)) |
40 | 36, 20, 25, 38, 39 | syl31anc 1371 |
. . . 4
⊢ (𝜑 → (𝐷 ∨ 𝐸) ∈ (LLines‘𝐾)) |
41 | 40 | 3ad2ant1 1131 |
. . 3
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝐷 ∨ 𝐸) ∈ (LLines‘𝐾)) |
42 | 2, 29 | llncmp 37463 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝐷 ∨ 𝐸) ∈ (LLines‘𝐾) ∧ 𝐵 ∈ (LLines‘𝐾)) → ((𝐷 ∨ 𝐸) ≤ 𝐵 ↔ (𝐷 ∨ 𝐸) = 𝐵)) |
43 | 37, 41, 30, 42 | syl3anc 1369 |
. 2
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((𝐷 ∨ 𝐸) ≤ 𝐵 ↔ (𝐷 ∨ 𝐸) = 𝐵)) |
44 | 35, 43 | mpbid 231 |
1
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝐷 ∨ 𝐸) = 𝐵) |