Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem60 Structured version   Visualization version   GIF version

Theorem dalem60 37673
Description: Lemma for dath 37677. 𝐵 is an axis of perspectivity (almost). (Contributed by NM, 11-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalem60.m = (meet‘𝐾)
dalem60.o 𝑂 = (LPlanes‘𝐾)
dalem60.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem60.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem60.d 𝐷 = ((𝑃 𝑄) (𝑆 𝑇))
dalem60.e 𝐸 = ((𝑄 𝑅) (𝑇 𝑈))
dalem60.g 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
dalem60.h 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
dalem60.i 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
dalem60.b1 𝐵 = (((𝐺 𝐻) 𝐼) 𝑌)
Assertion
Ref Expression
dalem60 ((𝜑𝑌 = 𝑍𝜓) → (𝐷 𝐸) = 𝐵)

Proof of Theorem dalem60
StepHypRef Expression
1 dalem.ph . . . 4 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
2 dalem.l . . . 4 = (le‘𝐾)
3 dalem.j . . . 4 = (join‘𝐾)
4 dalem.a . . . 4 𝐴 = (Atoms‘𝐾)
5 dalem.ps . . . 4 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
6 dalem60.m . . . 4 = (meet‘𝐾)
7 dalem60.o . . . 4 𝑂 = (LPlanes‘𝐾)
8 dalem60.y . . . 4 𝑌 = ((𝑃 𝑄) 𝑅)
9 dalem60.z . . . 4 𝑍 = ((𝑆 𝑇) 𝑈)
10 dalem60.d . . . 4 𝐷 = ((𝑃 𝑄) (𝑆 𝑇))
11 dalem60.g . . . 4 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
12 dalem60.h . . . 4 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
13 dalem60.i . . . 4 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
14 dalem60.b1 . . . 4 𝐵 = (((𝐺 𝐻) 𝐼) 𝑌)
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14dalem57 37670 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐷 𝐵)
16 dalem60.e . . . 4 𝐸 = ((𝑄 𝑅) (𝑇 𝑈))
171, 2, 3, 4, 5, 6, 7, 8, 9, 16, 11, 12, 13, 14dalem58 37671 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐸 𝐵)
181dalemkelat 37565 . . . . 5 (𝜑𝐾 ∈ Lat)
19183ad2ant1 1131 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ Lat)
201, 2, 3, 4, 6, 7, 8, 9, 10dalemdea 37603 . . . . . 6 (𝜑𝐷𝐴)
21 eqid 2738 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
2221, 4atbase 37230 . . . . . 6 (𝐷𝐴𝐷 ∈ (Base‘𝐾))
2320, 22syl 17 . . . . 5 (𝜑𝐷 ∈ (Base‘𝐾))
24233ad2ant1 1131 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐷 ∈ (Base‘𝐾))
251, 2, 3, 4, 6, 7, 8, 9, 16dalemeea 37604 . . . . . 6 (𝜑𝐸𝐴)
2621, 4atbase 37230 . . . . . 6 (𝐸𝐴𝐸 ∈ (Base‘𝐾))
2725, 26syl 17 . . . . 5 (𝜑𝐸 ∈ (Base‘𝐾))
28273ad2ant1 1131 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐸 ∈ (Base‘𝐾))
29 eqid 2738 . . . . . 6 (LLines‘𝐾) = (LLines‘𝐾)
301, 2, 3, 4, 5, 6, 29, 7, 8, 9, 11, 12, 13, 14dalem53 37666 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝐵 ∈ (LLines‘𝐾))
3121, 29llnbase 37450 . . . . 5 (𝐵 ∈ (LLines‘𝐾) → 𝐵 ∈ (Base‘𝐾))
3230, 31syl 17 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐵 ∈ (Base‘𝐾))
3321, 2, 3latjle12 18083 . . . 4 ((𝐾 ∈ Lat ∧ (𝐷 ∈ (Base‘𝐾) ∧ 𝐸 ∈ (Base‘𝐾) ∧ 𝐵 ∈ (Base‘𝐾))) → ((𝐷 𝐵𝐸 𝐵) ↔ (𝐷 𝐸) 𝐵))
3419, 24, 28, 32, 33syl13anc 1370 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ((𝐷 𝐵𝐸 𝐵) ↔ (𝐷 𝐸) 𝐵))
3515, 17, 34mpbi2and 708 . 2 ((𝜑𝑌 = 𝑍𝜓) → (𝐷 𝐸) 𝐵)
361dalemkehl 37564 . . . 4 (𝜑𝐾 ∈ HL)
37363ad2ant1 1131 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ HL)
381, 2, 3, 4, 6, 7, 8, 9, 10, 16dalemdnee 37607 . . . . 5 (𝜑𝐷𝐸)
393, 4, 29llni2 37453 . . . . 5 (((𝐾 ∈ HL ∧ 𝐷𝐴𝐸𝐴) ∧ 𝐷𝐸) → (𝐷 𝐸) ∈ (LLines‘𝐾))
4036, 20, 25, 38, 39syl31anc 1371 . . . 4 (𝜑 → (𝐷 𝐸) ∈ (LLines‘𝐾))
41403ad2ant1 1131 . . 3 ((𝜑𝑌 = 𝑍𝜓) → (𝐷 𝐸) ∈ (LLines‘𝐾))
422, 29llncmp 37463 . . 3 ((𝐾 ∈ HL ∧ (𝐷 𝐸) ∈ (LLines‘𝐾) ∧ 𝐵 ∈ (LLines‘𝐾)) → ((𝐷 𝐸) 𝐵 ↔ (𝐷 𝐸) = 𝐵))
4337, 41, 30, 42syl3anc 1369 . 2 ((𝜑𝑌 = 𝑍𝜓) → ((𝐷 𝐸) 𝐵 ↔ (𝐷 𝐸) = 𝐵))
4435, 43mpbid 231 1 ((𝜑𝑌 = 𝑍𝜓) → (𝐷 𝐸) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  lecple 16895  joincjn 17944  meetcmee 17945  Latclat 18064  Atomscatm 37204  HLchlt 37291  LLinesclln 37432  LPlanesclpl 37433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-llines 37439  df-lplanes 37440  df-lvols 37441
This theorem is referenced by:  dalem61  37674
  Copyright terms: Public domain W3C validator