Step | Hyp | Ref
| Expression |
1 | | dalem.ph |
. . . 4
β’ (π β (((πΎ β HL β§ πΆ β (BaseβπΎ)) β§ (π β π΄ β§ π β π΄ β§ π
β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (π β π β§ π β π) β§ ((Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π
) β§ Β¬ πΆ β€ (π
β¨ π)) β§ (Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π)) β§ (πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π) β§ πΆ β€ (π
β¨ π))))) |
2 | | dalem.l |
. . . 4
β’ β€ =
(leβπΎ) |
3 | | dalem.j |
. . . 4
β’ β¨ =
(joinβπΎ) |
4 | | dalem.a |
. . . 4
β’ π΄ = (AtomsβπΎ) |
5 | | dalem.ps |
. . . 4
β’ (π β ((π β π΄ β§ π β π΄) β§ Β¬ π β€ π β§ (π β π β§ Β¬ π β€ π β§ πΆ β€ (π β¨ π)))) |
6 | | dalem60.m |
. . . 4
β’ β§ =
(meetβπΎ) |
7 | | dalem60.o |
. . . 4
β’ π = (LPlanesβπΎ) |
8 | | dalem60.y |
. . . 4
β’ π = ((π β¨ π) β¨ π
) |
9 | | dalem60.z |
. . . 4
β’ π = ((π β¨ π) β¨ π) |
10 | | dalem60.d |
. . . 4
β’ π· = ((π β¨ π) β§ (π β¨ π)) |
11 | | dalem60.g |
. . . 4
β’ πΊ = ((π β¨ π) β§ (π β¨ π)) |
12 | | dalem60.h |
. . . 4
β’ π» = ((π β¨ π) β§ (π β¨ π)) |
13 | | dalem60.i |
. . . 4
β’ πΌ = ((π β¨ π
) β§ (π β¨ π)) |
14 | | dalem60.b1 |
. . . 4
β’ π΅ = (((πΊ β¨ π») β¨ πΌ) β§ π) |
15 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14 | dalem57 38588 |
. . 3
β’ ((π β§ π = π β§ π) β π· β€ π΅) |
16 | | dalem60.e |
. . . 4
β’ πΈ = ((π β¨ π
) β§ (π β¨ π)) |
17 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 16,
11, 12, 13, 14 | dalem58 38589 |
. . 3
β’ ((π β§ π = π β§ π) β πΈ β€ π΅) |
18 | 1 | dalemkelat 38483 |
. . . . 5
β’ (π β πΎ β Lat) |
19 | 18 | 3ad2ant1 1133 |
. . . 4
β’ ((π β§ π = π β§ π) β πΎ β Lat) |
20 | 1, 2, 3, 4, 6, 7, 8, 9, 10 | dalemdea 38521 |
. . . . . 6
β’ (π β π· β π΄) |
21 | | eqid 2732 |
. . . . . . 7
β’
(BaseβπΎ) =
(BaseβπΎ) |
22 | 21, 4 | atbase 38147 |
. . . . . 6
β’ (π· β π΄ β π· β (BaseβπΎ)) |
23 | 20, 22 | syl 17 |
. . . . 5
β’ (π β π· β (BaseβπΎ)) |
24 | 23 | 3ad2ant1 1133 |
. . . 4
β’ ((π β§ π = π β§ π) β π· β (BaseβπΎ)) |
25 | 1, 2, 3, 4, 6, 7, 8, 9, 16 | dalemeea 38522 |
. . . . . 6
β’ (π β πΈ β π΄) |
26 | 21, 4 | atbase 38147 |
. . . . . 6
β’ (πΈ β π΄ β πΈ β (BaseβπΎ)) |
27 | 25, 26 | syl 17 |
. . . . 5
β’ (π β πΈ β (BaseβπΎ)) |
28 | 27 | 3ad2ant1 1133 |
. . . 4
β’ ((π β§ π = π β§ π) β πΈ β (BaseβπΎ)) |
29 | | eqid 2732 |
. . . . . 6
β’
(LLinesβπΎ) =
(LLinesβπΎ) |
30 | 1, 2, 3, 4, 5, 6, 29, 7, 8, 9,
11, 12, 13, 14 | dalem53 38584 |
. . . . 5
β’ ((π β§ π = π β§ π) β π΅ β (LLinesβπΎ)) |
31 | 21, 29 | llnbase 38368 |
. . . . 5
β’ (π΅ β (LLinesβπΎ) β π΅ β (BaseβπΎ)) |
32 | 30, 31 | syl 17 |
. . . 4
β’ ((π β§ π = π β§ π) β π΅ β (BaseβπΎ)) |
33 | 21, 2, 3 | latjle12 18399 |
. . . 4
β’ ((πΎ β Lat β§ (π· β (BaseβπΎ) β§ πΈ β (BaseβπΎ) β§ π΅ β (BaseβπΎ))) β ((π· β€ π΅ β§ πΈ β€ π΅) β (π· β¨ πΈ) β€ π΅)) |
34 | 19, 24, 28, 32, 33 | syl13anc 1372 |
. . 3
β’ ((π β§ π = π β§ π) β ((π· β€ π΅ β§ πΈ β€ π΅) β (π· β¨ πΈ) β€ π΅)) |
35 | 15, 17, 34 | mpbi2and 710 |
. 2
β’ ((π β§ π = π β§ π) β (π· β¨ πΈ) β€ π΅) |
36 | 1 | dalemkehl 38482 |
. . . 4
β’ (π β πΎ β HL) |
37 | 36 | 3ad2ant1 1133 |
. . 3
β’ ((π β§ π = π β§ π) β πΎ β HL) |
38 | 1, 2, 3, 4, 6, 7, 8, 9, 10, 16 | dalemdnee 38525 |
. . . . 5
β’ (π β π· β πΈ) |
39 | 3, 4, 29 | llni2 38371 |
. . . . 5
β’ (((πΎ β HL β§ π· β π΄ β§ πΈ β π΄) β§ π· β πΈ) β (π· β¨ πΈ) β (LLinesβπΎ)) |
40 | 36, 20, 25, 38, 39 | syl31anc 1373 |
. . . 4
β’ (π β (π· β¨ πΈ) β (LLinesβπΎ)) |
41 | 40 | 3ad2ant1 1133 |
. . 3
β’ ((π β§ π = π β§ π) β (π· β¨ πΈ) β (LLinesβπΎ)) |
42 | 2, 29 | llncmp 38381 |
. . 3
β’ ((πΎ β HL β§ (π· β¨ πΈ) β (LLinesβπΎ) β§ π΅ β (LLinesβπΎ)) β ((π· β¨ πΈ) β€ π΅ β (π· β¨ πΈ) = π΅)) |
43 | 37, 41, 30, 42 | syl3anc 1371 |
. 2
β’ ((π β§ π = π β§ π) β ((π· β¨ πΈ) β€ π΅ β (π· β¨ πΈ) = π΅)) |
44 | 35, 43 | mpbid 231 |
1
β’ ((π β§ π = π β§ π) β (π· β¨ πΈ) = π΅) |