Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem60 Structured version   Visualization version   GIF version

Theorem dalem60 39715
Description: Lemma for dath 39719. 𝐵 is an axis of perspectivity (almost). (Contributed by NM, 11-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalem60.m = (meet‘𝐾)
dalem60.o 𝑂 = (LPlanes‘𝐾)
dalem60.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem60.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem60.d 𝐷 = ((𝑃 𝑄) (𝑆 𝑇))
dalem60.e 𝐸 = ((𝑄 𝑅) (𝑇 𝑈))
dalem60.g 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
dalem60.h 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
dalem60.i 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
dalem60.b1 𝐵 = (((𝐺 𝐻) 𝐼) 𝑌)
Assertion
Ref Expression
dalem60 ((𝜑𝑌 = 𝑍𝜓) → (𝐷 𝐸) = 𝐵)

Proof of Theorem dalem60
StepHypRef Expression
1 dalem.ph . . . 4 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
2 dalem.l . . . 4 = (le‘𝐾)
3 dalem.j . . . 4 = (join‘𝐾)
4 dalem.a . . . 4 𝐴 = (Atoms‘𝐾)
5 dalem.ps . . . 4 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
6 dalem60.m . . . 4 = (meet‘𝐾)
7 dalem60.o . . . 4 𝑂 = (LPlanes‘𝐾)
8 dalem60.y . . . 4 𝑌 = ((𝑃 𝑄) 𝑅)
9 dalem60.z . . . 4 𝑍 = ((𝑆 𝑇) 𝑈)
10 dalem60.d . . . 4 𝐷 = ((𝑃 𝑄) (𝑆 𝑇))
11 dalem60.g . . . 4 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
12 dalem60.h . . . 4 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
13 dalem60.i . . . 4 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
14 dalem60.b1 . . . 4 𝐵 = (((𝐺 𝐻) 𝐼) 𝑌)
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14dalem57 39712 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐷 𝐵)
16 dalem60.e . . . 4 𝐸 = ((𝑄 𝑅) (𝑇 𝑈))
171, 2, 3, 4, 5, 6, 7, 8, 9, 16, 11, 12, 13, 14dalem58 39713 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐸 𝐵)
181dalemkelat 39607 . . . . 5 (𝜑𝐾 ∈ Lat)
19183ad2ant1 1133 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ Lat)
201, 2, 3, 4, 6, 7, 8, 9, 10dalemdea 39645 . . . . . 6 (𝜑𝐷𝐴)
21 eqid 2729 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
2221, 4atbase 39272 . . . . . 6 (𝐷𝐴𝐷 ∈ (Base‘𝐾))
2320, 22syl 17 . . . . 5 (𝜑𝐷 ∈ (Base‘𝐾))
24233ad2ant1 1133 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐷 ∈ (Base‘𝐾))
251, 2, 3, 4, 6, 7, 8, 9, 16dalemeea 39646 . . . . . 6 (𝜑𝐸𝐴)
2621, 4atbase 39272 . . . . . 6 (𝐸𝐴𝐸 ∈ (Base‘𝐾))
2725, 26syl 17 . . . . 5 (𝜑𝐸 ∈ (Base‘𝐾))
28273ad2ant1 1133 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐸 ∈ (Base‘𝐾))
29 eqid 2729 . . . . . 6 (LLines‘𝐾) = (LLines‘𝐾)
301, 2, 3, 4, 5, 6, 29, 7, 8, 9, 11, 12, 13, 14dalem53 39708 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝐵 ∈ (LLines‘𝐾))
3121, 29llnbase 39492 . . . . 5 (𝐵 ∈ (LLines‘𝐾) → 𝐵 ∈ (Base‘𝐾))
3230, 31syl 17 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐵 ∈ (Base‘𝐾))
3321, 2, 3latjle12 18356 . . . 4 ((𝐾 ∈ Lat ∧ (𝐷 ∈ (Base‘𝐾) ∧ 𝐸 ∈ (Base‘𝐾) ∧ 𝐵 ∈ (Base‘𝐾))) → ((𝐷 𝐵𝐸 𝐵) ↔ (𝐷 𝐸) 𝐵))
3419, 24, 28, 32, 33syl13anc 1374 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ((𝐷 𝐵𝐸 𝐵) ↔ (𝐷 𝐸) 𝐵))
3515, 17, 34mpbi2and 712 . 2 ((𝜑𝑌 = 𝑍𝜓) → (𝐷 𝐸) 𝐵)
361dalemkehl 39606 . . . 4 (𝜑𝐾 ∈ HL)
37363ad2ant1 1133 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ HL)
381, 2, 3, 4, 6, 7, 8, 9, 10, 16dalemdnee 39649 . . . . 5 (𝜑𝐷𝐸)
393, 4, 29llni2 39495 . . . . 5 (((𝐾 ∈ HL ∧ 𝐷𝐴𝐸𝐴) ∧ 𝐷𝐸) → (𝐷 𝐸) ∈ (LLines‘𝐾))
4036, 20, 25, 38, 39syl31anc 1375 . . . 4 (𝜑 → (𝐷 𝐸) ∈ (LLines‘𝐾))
41403ad2ant1 1133 . . 3 ((𝜑𝑌 = 𝑍𝜓) → (𝐷 𝐸) ∈ (LLines‘𝐾))
422, 29llncmp 39505 . . 3 ((𝐾 ∈ HL ∧ (𝐷 𝐸) ∈ (LLines‘𝐾) ∧ 𝐵 ∈ (LLines‘𝐾)) → ((𝐷 𝐸) 𝐵 ↔ (𝐷 𝐸) = 𝐵))
4337, 41, 30, 42syl3anc 1373 . 2 ((𝜑𝑌 = 𝑍𝜓) → ((𝐷 𝐸) 𝐵 ↔ (𝐷 𝐸) = 𝐵))
4435, 43mpbid 232 1 ((𝜑𝑌 = 𝑍𝜓) → (𝐷 𝐸) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5092  cfv 6482  (class class class)co 7349  Basecbs 17120  lecple 17168  joincjn 18217  meetcmee 18218  Latclat 18337  Atomscatm 39246  HLchlt 39333  LLinesclln 39474  LPlanesclpl 39475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-lat 18338  df-clat 18405  df-oposet 39159  df-ol 39161  df-oml 39162  df-covers 39249  df-ats 39250  df-atl 39281  df-cvlat 39305  df-hlat 39334  df-llines 39481  df-lplanes 39482  df-lvols 39483
This theorem is referenced by:  dalem61  39716
  Copyright terms: Public domain W3C validator