Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem16 Structured version   Visualization version   GIF version

Theorem dalem16 36296
Description: Lemma for dath 36353. The atoms 𝐷, 𝐸, and 𝐹 form a line of perspectivity. This is Desargues's theorem for the special case where planes 𝑌 and 𝑍 are different. (Contributed by NM, 7-Aug-2012.)
Hypotheses
Ref Expression
dalema.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalemc.l = (le‘𝐾)
dalemc.j = (join‘𝐾)
dalemc.a 𝐴 = (Atoms‘𝐾)
dalem16.m = (meet‘𝐾)
dalem16.o 𝑂 = (LPlanes‘𝐾)
dalem16.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem16.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem16.d 𝐷 = ((𝑃 𝑄) (𝑆 𝑇))
dalem16.e 𝐸 = ((𝑄 𝑅) (𝑇 𝑈))
dalem16.f 𝐹 = ((𝑅 𝑃) (𝑈 𝑆))
Assertion
Ref Expression
dalem16 ((𝜑𝑌𝑍) → 𝐹 (𝐷 𝐸))

Proof of Theorem dalem16
StepHypRef Expression
1 dalema.ph . . . 4 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
2 dalemc.l . . . 4 = (le‘𝐾)
3 dalemc.j . . . 4 = (join‘𝐾)
4 dalemc.a . . . 4 𝐴 = (Atoms‘𝐾)
5 dalem16.m . . . 4 = (meet‘𝐾)
6 dalem16.o . . . 4 𝑂 = (LPlanes‘𝐾)
7 dalem16.y . . . 4 𝑌 = ((𝑃 𝑄) 𝑅)
8 dalem16.z . . . 4 𝑍 = ((𝑆 𝑇) 𝑈)
9 eqid 2793 . . . 4 (𝑌 𝑍) = (𝑌 𝑍)
10 dalem16.f . . . 4 𝐹 = ((𝑅 𝑃) (𝑈 𝑆))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10dalem12 36292 . . 3 (𝜑𝐹 (𝑌 𝑍))
1211adantr 481 . 2 ((𝜑𝑌𝑍) → 𝐹 (𝑌 𝑍))
13 dalem16.d . . . . . 6 𝐷 = ((𝑃 𝑄) (𝑆 𝑇))
141, 2, 3, 4, 5, 6, 7, 8, 9, 13dalem10 36290 . . . . 5 (𝜑𝐷 (𝑌 𝑍))
15 dalem16.e . . . . . 6 𝐸 = ((𝑄 𝑅) (𝑇 𝑈))
161, 2, 3, 4, 5, 6, 7, 8, 9, 15dalem11 36291 . . . . 5 (𝜑𝐸 (𝑌 𝑍))
171dalemkelat 36241 . . . . . 6 (𝜑𝐾 ∈ Lat)
181, 2, 3, 4, 5, 6, 7, 8, 13dalemdea 36279 . . . . . . 7 (𝜑𝐷𝐴)
19 eqid 2793 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
2019, 4atbase 35906 . . . . . . 7 (𝐷𝐴𝐷 ∈ (Base‘𝐾))
2118, 20syl 17 . . . . . 6 (𝜑𝐷 ∈ (Base‘𝐾))
221, 2, 3, 4, 5, 6, 7, 8, 15dalemeea 36280 . . . . . . 7 (𝜑𝐸𝐴)
2319, 4atbase 35906 . . . . . . 7 (𝐸𝐴𝐸 ∈ (Base‘𝐾))
2422, 23syl 17 . . . . . 6 (𝜑𝐸 ∈ (Base‘𝐾))
251, 6dalemyeb 36266 . . . . . . 7 (𝜑𝑌 ∈ (Base‘𝐾))
261dalemzeo 36250 . . . . . . . 8 (𝜑𝑍𝑂)
2719, 6lplnbase 36151 . . . . . . . 8 (𝑍𝑂𝑍 ∈ (Base‘𝐾))
2826, 27syl 17 . . . . . . 7 (𝜑𝑍 ∈ (Base‘𝐾))
2919, 5latmcl 17479 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝑍 ∈ (Base‘𝐾)) → (𝑌 𝑍) ∈ (Base‘𝐾))
3017, 25, 28, 29syl3anc 1362 . . . . . 6 (𝜑 → (𝑌 𝑍) ∈ (Base‘𝐾))
3119, 2, 3latjle12 17489 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐷 ∈ (Base‘𝐾) ∧ 𝐸 ∈ (Base‘𝐾) ∧ (𝑌 𝑍) ∈ (Base‘𝐾))) → ((𝐷 (𝑌 𝑍) ∧ 𝐸 (𝑌 𝑍)) ↔ (𝐷 𝐸) (𝑌 𝑍)))
3217, 21, 24, 30, 31syl13anc 1363 . . . . 5 (𝜑 → ((𝐷 (𝑌 𝑍) ∧ 𝐸 (𝑌 𝑍)) ↔ (𝐷 𝐸) (𝑌 𝑍)))
3314, 16, 32mpbi2and 708 . . . 4 (𝜑 → (𝐷 𝐸) (𝑌 𝑍))
3433adantr 481 . . 3 ((𝜑𝑌𝑍) → (𝐷 𝐸) (𝑌 𝑍))
351dalemkehl 36240 . . . . 5 (𝜑𝐾 ∈ HL)
3635adantr 481 . . . 4 ((𝜑𝑌𝑍) → 𝐾 ∈ HL)
371, 2, 3, 4, 5, 6, 7, 8, 13, 15dalemdnee 36283 . . . . . 6 (𝜑𝐷𝐸)
38 eqid 2793 . . . . . . 7 (LLines‘𝐾) = (LLines‘𝐾)
393, 4, 38llni2 36129 . . . . . 6 (((𝐾 ∈ HL ∧ 𝐷𝐴𝐸𝐴) ∧ 𝐷𝐸) → (𝐷 𝐸) ∈ (LLines‘𝐾))
4035, 18, 22, 37, 39syl31anc 1364 . . . . 5 (𝜑 → (𝐷 𝐸) ∈ (LLines‘𝐾))
4140adantr 481 . . . 4 ((𝜑𝑌𝑍) → (𝐷 𝐸) ∈ (LLines‘𝐾))
421, 2, 3, 4, 5, 38, 6, 7, 8, 9dalem15 36295 . . . 4 ((𝜑𝑌𝑍) → (𝑌 𝑍) ∈ (LLines‘𝐾))
432, 38llncmp 36139 . . . 4 ((𝐾 ∈ HL ∧ (𝐷 𝐸) ∈ (LLines‘𝐾) ∧ (𝑌 𝑍) ∈ (LLines‘𝐾)) → ((𝐷 𝐸) (𝑌 𝑍) ↔ (𝐷 𝐸) = (𝑌 𝑍)))
4436, 41, 42, 43syl3anc 1362 . . 3 ((𝜑𝑌𝑍) → ((𝐷 𝐸) (𝑌 𝑍) ↔ (𝐷 𝐸) = (𝑌 𝑍)))
4534, 44mpbid 233 . 2 ((𝜑𝑌𝑍) → (𝐷 𝐸) = (𝑌 𝑍))
4612, 45breqtrrd 4984 1 ((𝜑𝑌𝑍) → 𝐹 (𝐷 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1078   = wceq 1520  wcel 2079  wne 2982   class class class wbr 4956  cfv 6217  (class class class)co 7007  Basecbs 16300  lecple 16389  joincjn 17371  meetcmee 17372  Latclat 17472  Atomscatm 35880  HLchlt 35967  LLinesclln 36108  LPlanesclpl 36109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-rep 5075  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1079  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-ral 3108  df-rex 3109  df-reu 3110  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-op 4473  df-uni 4740  df-iun 4821  df-br 4957  df-opab 5019  df-mpt 5036  df-id 5340  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-riota 6968  df-ov 7010  df-oprab 7011  df-proset 17355  df-poset 17373  df-plt 17385  df-lub 17401  df-glb 17402  df-join 17403  df-meet 17404  df-p0 17466  df-lat 17473  df-clat 17535  df-oposet 35793  df-ol 35795  df-oml 35796  df-covers 35883  df-ats 35884  df-atl 35915  df-cvlat 35939  df-hlat 35968  df-llines 36115  df-lplanes 36116  df-lvols 36117
This theorem is referenced by:  dalem63  36352
  Copyright terms: Public domain W3C validator