Proof of Theorem dalem16
Step | Hyp | Ref
| Expression |
1 | | dalema.ph |
. . . 4
⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
2 | | dalemc.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
3 | | dalemc.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
4 | | dalemc.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
5 | | dalem16.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
6 | | dalem16.o |
. . . 4
⊢ 𝑂 = (LPlanes‘𝐾) |
7 | | dalem16.y |
. . . 4
⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
8 | | dalem16.z |
. . . 4
⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) |
9 | | eqid 2738 |
. . . 4
⊢ (𝑌 ∧ 𝑍) = (𝑌 ∧ 𝑍) |
10 | | dalem16.f |
. . . 4
⊢ 𝐹 = ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)) |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | dalem12 37616 |
. . 3
⊢ (𝜑 → 𝐹 ≤ (𝑌 ∧ 𝑍)) |
12 | 11 | adantr 480 |
. 2
⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → 𝐹 ≤ (𝑌 ∧ 𝑍)) |
13 | | dalem16.d |
. . . . . 6
⊢ 𝐷 = ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) |
14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 13 | dalem10 37614 |
. . . . 5
⊢ (𝜑 → 𝐷 ≤ (𝑌 ∧ 𝑍)) |
15 | | dalem16.e |
. . . . . 6
⊢ 𝐸 = ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) |
16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 15 | dalem11 37615 |
. . . . 5
⊢ (𝜑 → 𝐸 ≤ (𝑌 ∧ 𝑍)) |
17 | 1 | dalemkelat 37565 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ Lat) |
18 | 1, 2, 3, 4, 5, 6, 7, 8, 13 | dalemdea 37603 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ 𝐴) |
19 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘𝐾) =
(Base‘𝐾) |
20 | 19, 4 | atbase 37230 |
. . . . . . 7
⊢ (𝐷 ∈ 𝐴 → 𝐷 ∈ (Base‘𝐾)) |
21 | 18, 20 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐷 ∈ (Base‘𝐾)) |
22 | 1, 2, 3, 4, 5, 6, 7, 8, 15 | dalemeea 37604 |
. . . . . . 7
⊢ (𝜑 → 𝐸 ∈ 𝐴) |
23 | 19, 4 | atbase 37230 |
. . . . . . 7
⊢ (𝐸 ∈ 𝐴 → 𝐸 ∈ (Base‘𝐾)) |
24 | 22, 23 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐸 ∈ (Base‘𝐾)) |
25 | 1, 6 | dalemyeb 37590 |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ (Base‘𝐾)) |
26 | 1 | dalemzeo 37574 |
. . . . . . . 8
⊢ (𝜑 → 𝑍 ∈ 𝑂) |
27 | 19, 6 | lplnbase 37475 |
. . . . . . . 8
⊢ (𝑍 ∈ 𝑂 → 𝑍 ∈ (Base‘𝐾)) |
28 | 26, 27 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑍 ∈ (Base‘𝐾)) |
29 | 19, 5 | latmcl 18073 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝑍 ∈ (Base‘𝐾)) → (𝑌 ∧ 𝑍) ∈ (Base‘𝐾)) |
30 | 17, 25, 28, 29 | syl3anc 1369 |
. . . . . 6
⊢ (𝜑 → (𝑌 ∧ 𝑍) ∈ (Base‘𝐾)) |
31 | 19, 2, 3 | latjle12 18083 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝐷 ∈ (Base‘𝐾) ∧ 𝐸 ∈ (Base‘𝐾) ∧ (𝑌 ∧ 𝑍) ∈ (Base‘𝐾))) → ((𝐷 ≤ (𝑌 ∧ 𝑍) ∧ 𝐸 ≤ (𝑌 ∧ 𝑍)) ↔ (𝐷 ∨ 𝐸) ≤ (𝑌 ∧ 𝑍))) |
32 | 17, 21, 24, 30, 31 | syl13anc 1370 |
. . . . 5
⊢ (𝜑 → ((𝐷 ≤ (𝑌 ∧ 𝑍) ∧ 𝐸 ≤ (𝑌 ∧ 𝑍)) ↔ (𝐷 ∨ 𝐸) ≤ (𝑌 ∧ 𝑍))) |
33 | 14, 16, 32 | mpbi2and 708 |
. . . 4
⊢ (𝜑 → (𝐷 ∨ 𝐸) ≤ (𝑌 ∧ 𝑍)) |
34 | 33 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → (𝐷 ∨ 𝐸) ≤ (𝑌 ∧ 𝑍)) |
35 | 1 | dalemkehl 37564 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ HL) |
36 | 35 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → 𝐾 ∈ HL) |
37 | 1, 2, 3, 4, 5, 6, 7, 8, 13, 15 | dalemdnee 37607 |
. . . . . 6
⊢ (𝜑 → 𝐷 ≠ 𝐸) |
38 | | eqid 2738 |
. . . . . . 7
⊢
(LLines‘𝐾) =
(LLines‘𝐾) |
39 | 3, 4, 38 | llni2 37453 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝐷 ∈ 𝐴 ∧ 𝐸 ∈ 𝐴) ∧ 𝐷 ≠ 𝐸) → (𝐷 ∨ 𝐸) ∈ (LLines‘𝐾)) |
40 | 35, 18, 22, 37, 39 | syl31anc 1371 |
. . . . 5
⊢ (𝜑 → (𝐷 ∨ 𝐸) ∈ (LLines‘𝐾)) |
41 | 40 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → (𝐷 ∨ 𝐸) ∈ (LLines‘𝐾)) |
42 | 1, 2, 3, 4, 5, 38,
6, 7, 8, 9 | dalem15 37619 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → (𝑌 ∧ 𝑍) ∈ (LLines‘𝐾)) |
43 | 2, 38 | llncmp 37463 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝐷 ∨ 𝐸) ∈ (LLines‘𝐾) ∧ (𝑌 ∧ 𝑍) ∈ (LLines‘𝐾)) → ((𝐷 ∨ 𝐸) ≤ (𝑌 ∧ 𝑍) ↔ (𝐷 ∨ 𝐸) = (𝑌 ∧ 𝑍))) |
44 | 36, 41, 42, 43 | syl3anc 1369 |
. . 3
⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → ((𝐷 ∨ 𝐸) ≤ (𝑌 ∧ 𝑍) ↔ (𝐷 ∨ 𝐸) = (𝑌 ∧ 𝑍))) |
45 | 34, 44 | mpbid 231 |
. 2
⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → (𝐷 ∨ 𝐸) = (𝑌 ∧ 𝑍)) |
46 | 12, 45 | breqtrrd 5098 |
1
⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → 𝐹 ≤ (𝐷 ∨ 𝐸)) |