Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem16 Structured version   Visualization version   GIF version

Theorem dalem16 39666
Description: Lemma for dath 39723. The atoms 𝐷, 𝐸, and 𝐹 form a line of perspectivity. This is Desargues's theorem for the special case where planes 𝑌 and 𝑍 are different. (Contributed by NM, 7-Aug-2012.)
Hypotheses
Ref Expression
dalema.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalemc.l = (le‘𝐾)
dalemc.j = (join‘𝐾)
dalemc.a 𝐴 = (Atoms‘𝐾)
dalem16.m = (meet‘𝐾)
dalem16.o 𝑂 = (LPlanes‘𝐾)
dalem16.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem16.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem16.d 𝐷 = ((𝑃 𝑄) (𝑆 𝑇))
dalem16.e 𝐸 = ((𝑄 𝑅) (𝑇 𝑈))
dalem16.f 𝐹 = ((𝑅 𝑃) (𝑈 𝑆))
Assertion
Ref Expression
dalem16 ((𝜑𝑌𝑍) → 𝐹 (𝐷 𝐸))

Proof of Theorem dalem16
StepHypRef Expression
1 dalema.ph . . . 4 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
2 dalemc.l . . . 4 = (le‘𝐾)
3 dalemc.j . . . 4 = (join‘𝐾)
4 dalemc.a . . . 4 𝐴 = (Atoms‘𝐾)
5 dalem16.m . . . 4 = (meet‘𝐾)
6 dalem16.o . . . 4 𝑂 = (LPlanes‘𝐾)
7 dalem16.y . . . 4 𝑌 = ((𝑃 𝑄) 𝑅)
8 dalem16.z . . . 4 𝑍 = ((𝑆 𝑇) 𝑈)
9 eqid 2729 . . . 4 (𝑌 𝑍) = (𝑌 𝑍)
10 dalem16.f . . . 4 𝐹 = ((𝑅 𝑃) (𝑈 𝑆))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10dalem12 39662 . . 3 (𝜑𝐹 (𝑌 𝑍))
1211adantr 480 . 2 ((𝜑𝑌𝑍) → 𝐹 (𝑌 𝑍))
13 dalem16.d . . . . . 6 𝐷 = ((𝑃 𝑄) (𝑆 𝑇))
141, 2, 3, 4, 5, 6, 7, 8, 9, 13dalem10 39660 . . . . 5 (𝜑𝐷 (𝑌 𝑍))
15 dalem16.e . . . . . 6 𝐸 = ((𝑄 𝑅) (𝑇 𝑈))
161, 2, 3, 4, 5, 6, 7, 8, 9, 15dalem11 39661 . . . . 5 (𝜑𝐸 (𝑌 𝑍))
171dalemkelat 39611 . . . . . 6 (𝜑𝐾 ∈ Lat)
181, 2, 3, 4, 5, 6, 7, 8, 13dalemdea 39649 . . . . . . 7 (𝜑𝐷𝐴)
19 eqid 2729 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
2019, 4atbase 39275 . . . . . . 7 (𝐷𝐴𝐷 ∈ (Base‘𝐾))
2118, 20syl 17 . . . . . 6 (𝜑𝐷 ∈ (Base‘𝐾))
221, 2, 3, 4, 5, 6, 7, 8, 15dalemeea 39650 . . . . . . 7 (𝜑𝐸𝐴)
2319, 4atbase 39275 . . . . . . 7 (𝐸𝐴𝐸 ∈ (Base‘𝐾))
2422, 23syl 17 . . . . . 6 (𝜑𝐸 ∈ (Base‘𝐾))
251, 6dalemyeb 39636 . . . . . . 7 (𝜑𝑌 ∈ (Base‘𝐾))
261dalemzeo 39620 . . . . . . . 8 (𝜑𝑍𝑂)
2719, 6lplnbase 39521 . . . . . . . 8 (𝑍𝑂𝑍 ∈ (Base‘𝐾))
2826, 27syl 17 . . . . . . 7 (𝜑𝑍 ∈ (Base‘𝐾))
2919, 5latmcl 18381 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝑍 ∈ (Base‘𝐾)) → (𝑌 𝑍) ∈ (Base‘𝐾))
3017, 25, 28, 29syl3anc 1373 . . . . . 6 (𝜑 → (𝑌 𝑍) ∈ (Base‘𝐾))
3119, 2, 3latjle12 18391 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐷 ∈ (Base‘𝐾) ∧ 𝐸 ∈ (Base‘𝐾) ∧ (𝑌 𝑍) ∈ (Base‘𝐾))) → ((𝐷 (𝑌 𝑍) ∧ 𝐸 (𝑌 𝑍)) ↔ (𝐷 𝐸) (𝑌 𝑍)))
3217, 21, 24, 30, 31syl13anc 1374 . . . . 5 (𝜑 → ((𝐷 (𝑌 𝑍) ∧ 𝐸 (𝑌 𝑍)) ↔ (𝐷 𝐸) (𝑌 𝑍)))
3314, 16, 32mpbi2and 712 . . . 4 (𝜑 → (𝐷 𝐸) (𝑌 𝑍))
3433adantr 480 . . 3 ((𝜑𝑌𝑍) → (𝐷 𝐸) (𝑌 𝑍))
351dalemkehl 39610 . . . . 5 (𝜑𝐾 ∈ HL)
3635adantr 480 . . . 4 ((𝜑𝑌𝑍) → 𝐾 ∈ HL)
371, 2, 3, 4, 5, 6, 7, 8, 13, 15dalemdnee 39653 . . . . . 6 (𝜑𝐷𝐸)
38 eqid 2729 . . . . . . 7 (LLines‘𝐾) = (LLines‘𝐾)
393, 4, 38llni2 39499 . . . . . 6 (((𝐾 ∈ HL ∧ 𝐷𝐴𝐸𝐴) ∧ 𝐷𝐸) → (𝐷 𝐸) ∈ (LLines‘𝐾))
4035, 18, 22, 37, 39syl31anc 1375 . . . . 5 (𝜑 → (𝐷 𝐸) ∈ (LLines‘𝐾))
4140adantr 480 . . . 4 ((𝜑𝑌𝑍) → (𝐷 𝐸) ∈ (LLines‘𝐾))
421, 2, 3, 4, 5, 38, 6, 7, 8, 9dalem15 39665 . . . 4 ((𝜑𝑌𝑍) → (𝑌 𝑍) ∈ (LLines‘𝐾))
432, 38llncmp 39509 . . . 4 ((𝐾 ∈ HL ∧ (𝐷 𝐸) ∈ (LLines‘𝐾) ∧ (𝑌 𝑍) ∈ (LLines‘𝐾)) → ((𝐷 𝐸) (𝑌 𝑍) ↔ (𝐷 𝐸) = (𝑌 𝑍)))
4436, 41, 42, 43syl3anc 1373 . . 3 ((𝜑𝑌𝑍) → ((𝐷 𝐸) (𝑌 𝑍) ↔ (𝐷 𝐸) = (𝑌 𝑍)))
4534, 44mpbid 232 . 2 ((𝜑𝑌𝑍) → (𝐷 𝐸) = (𝑌 𝑍))
4612, 45breqtrrd 5130 1 ((𝜑𝑌𝑍) → 𝐹 (𝐷 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203  joincjn 18252  meetcmee 18253  Latclat 18372  Atomscatm 39249  HLchlt 39336  LLinesclln 39478  LPlanesclpl 39479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-proset 18235  df-poset 18254  df-plt 18269  df-lub 18285  df-glb 18286  df-join 18287  df-meet 18288  df-p0 18364  df-lat 18373  df-clat 18440  df-oposet 39162  df-ol 39164  df-oml 39165  df-covers 39252  df-ats 39253  df-atl 39284  df-cvlat 39308  df-hlat 39337  df-llines 39485  df-lplanes 39486  df-lvols 39487
This theorem is referenced by:  dalem63  39722
  Copyright terms: Public domain W3C validator