Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dalem9 | Structured version Visualization version GIF version |
Description: Lemma for dath 37750. Since ¬ 𝐶 ≤ 𝑌, the join 𝑌 ∨ 𝐶 forms a 3-dimensional space. (Contributed by NM, 20-Jul-2012.) |
Ref | Expression |
---|---|
dalema.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
dalemc.l | ⊢ ≤ = (le‘𝐾) |
dalemc.j | ⊢ ∨ = (join‘𝐾) |
dalemc.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dalem9.o | ⊢ 𝑂 = (LPlanes‘𝐾) |
dalem9.v | ⊢ 𝑉 = (LVols‘𝐾) |
dalem9.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
dalem9.z | ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) |
dalem9.w | ⊢ 𝑊 = (𝑌 ∨ 𝐶) |
Ref | Expression |
---|---|
dalem9 | ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → 𝑊 ∈ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalem9.w | . 2 ⊢ 𝑊 = (𝑌 ∨ 𝐶) | |
2 | dalema.ph | . . . . 5 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | |
3 | 2 | dalemkehl 37637 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ HL) |
4 | 3 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → 𝐾 ∈ HL) |
5 | 2 | dalemyeo 37646 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑂) |
6 | 5 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → 𝑌 ∈ 𝑂) |
7 | dalemc.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
8 | dalemc.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
9 | dalemc.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
10 | dalem9.o | . . . . 5 ⊢ 𝑂 = (LPlanes‘𝐾) | |
11 | dalem9.y | . . . . 5 ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) | |
12 | 2, 7, 8, 9, 10, 11 | dalemcea 37674 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
13 | 12 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → 𝐶 ∈ 𝐴) |
14 | dalem9.z | . . . 4 ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) | |
15 | 2, 7, 8, 9, 10, 11, 14 | dalem-cly 37685 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → ¬ 𝐶 ≤ 𝑌) |
16 | dalem9.v | . . . 4 ⊢ 𝑉 = (LVols‘𝐾) | |
17 | 7, 8, 9, 10, 16 | lvoli3 37591 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑌 ∈ 𝑂 ∧ 𝐶 ∈ 𝐴) ∧ ¬ 𝐶 ≤ 𝑌) → (𝑌 ∨ 𝐶) ∈ 𝑉) |
18 | 4, 6, 13, 15, 17 | syl31anc 1372 | . 2 ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → (𝑌 ∨ 𝐶) ∈ 𝑉) |
19 | 1, 18 | eqeltrid 2843 | 1 ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → 𝑊 ∈ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 lecple 16969 joincjn 18029 Atomscatm 37277 HLchlt 37364 LPlanesclpl 37506 LVolsclvol 37507 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-proset 18013 df-poset 18031 df-plt 18048 df-lub 18064 df-glb 18065 df-join 18066 df-meet 18067 df-p0 18143 df-lat 18150 df-clat 18217 df-oposet 37190 df-ol 37192 df-oml 37193 df-covers 37280 df-ats 37281 df-atl 37312 df-cvlat 37336 df-hlat 37365 df-llines 37512 df-lplanes 37513 df-lvols 37514 |
This theorem is referenced by: dalem13 37690 dalem14 37691 |
Copyright terms: Public domain | W3C validator |