![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dalem9 | Structured version Visualization version GIF version |
Description: Lemma for dath 39071. Since Β¬ πΆ β€ π, the join π β¨ πΆ forms a 3-dimensional space. (Contributed by NM, 20-Jul-2012.) |
Ref | Expression |
---|---|
dalema.ph | β’ (π β (((πΎ β HL β§ πΆ β (BaseβπΎ)) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (π β π β§ π β π) β§ ((Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π ) β§ Β¬ πΆ β€ (π β¨ π)) β§ (Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π)) β§ (πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π))))) |
dalemc.l | β’ β€ = (leβπΎ) |
dalemc.j | β’ β¨ = (joinβπΎ) |
dalemc.a | β’ π΄ = (AtomsβπΎ) |
dalem9.o | β’ π = (LPlanesβπΎ) |
dalem9.v | β’ π = (LVolsβπΎ) |
dalem9.y | β’ π = ((π β¨ π) β¨ π ) |
dalem9.z | β’ π = ((π β¨ π) β¨ π) |
dalem9.w | β’ π = (π β¨ πΆ) |
Ref | Expression |
---|---|
dalem9 | β’ ((π β§ π β π) β π β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalem9.w | . 2 β’ π = (π β¨ πΆ) | |
2 | dalema.ph | . . . . 5 β’ (π β (((πΎ β HL β§ πΆ β (BaseβπΎ)) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (π β π β§ π β π) β§ ((Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π ) β§ Β¬ πΆ β€ (π β¨ π)) β§ (Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π)) β§ (πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π))))) | |
3 | 2 | dalemkehl 38958 | . . . 4 β’ (π β πΎ β HL) |
4 | 3 | adantr 480 | . . 3 β’ ((π β§ π β π) β πΎ β HL) |
5 | 2 | dalemyeo 38967 | . . . 4 β’ (π β π β π) |
6 | 5 | adantr 480 | . . 3 β’ ((π β§ π β π) β π β π) |
7 | dalemc.l | . . . . 5 β’ β€ = (leβπΎ) | |
8 | dalemc.j | . . . . 5 β’ β¨ = (joinβπΎ) | |
9 | dalemc.a | . . . . 5 β’ π΄ = (AtomsβπΎ) | |
10 | dalem9.o | . . . . 5 β’ π = (LPlanesβπΎ) | |
11 | dalem9.y | . . . . 5 β’ π = ((π β¨ π) β¨ π ) | |
12 | 2, 7, 8, 9, 10, 11 | dalemcea 38995 | . . . 4 β’ (π β πΆ β π΄) |
13 | 12 | adantr 480 | . . 3 β’ ((π β§ π β π) β πΆ β π΄) |
14 | dalem9.z | . . . 4 β’ π = ((π β¨ π) β¨ π) | |
15 | 2, 7, 8, 9, 10, 11, 14 | dalem-cly 39006 | . . 3 β’ ((π β§ π β π) β Β¬ πΆ β€ π) |
16 | dalem9.v | . . . 4 β’ π = (LVolsβπΎ) | |
17 | 7, 8, 9, 10, 16 | lvoli3 38912 | . . 3 β’ (((πΎ β HL β§ π β π β§ πΆ β π΄) β§ Β¬ πΆ β€ π) β (π β¨ πΆ) β π) |
18 | 4, 6, 13, 15, 17 | syl31anc 1372 | . 2 β’ ((π β§ π β π) β (π β¨ πΆ) β π) |
19 | 1, 18 | eqeltrid 2836 | 1 β’ ((π β§ π β π) β π β π) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 β wne 2939 class class class wbr 5148 βcfv 6543 (class class class)co 7412 Basecbs 17151 lecple 17211 joincjn 18274 Atomscatm 38597 HLchlt 38684 LPlanesclpl 38827 LVolsclvol 38828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-proset 18258 df-poset 18276 df-plt 18293 df-lub 18309 df-glb 18310 df-join 18311 df-meet 18312 df-p0 18388 df-lat 18395 df-clat 18462 df-oposet 38510 df-ol 38512 df-oml 38513 df-covers 38600 df-ats 38601 df-atl 38632 df-cvlat 38656 df-hlat 38685 df-llines 38833 df-lplanes 38834 df-lvols 38835 |
This theorem is referenced by: dalem13 39011 dalem14 39012 |
Copyright terms: Public domain | W3C validator |