| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dalem9 | Structured version Visualization version GIF version | ||
| Description: Lemma for dath 39719. Since ¬ 𝐶 ≤ 𝑌, the join 𝑌 ∨ 𝐶 forms a 3-dimensional space. (Contributed by NM, 20-Jul-2012.) |
| Ref | Expression |
|---|---|
| dalema.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
| dalemc.l | ⊢ ≤ = (le‘𝐾) |
| dalemc.j | ⊢ ∨ = (join‘𝐾) |
| dalemc.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| dalem9.o | ⊢ 𝑂 = (LPlanes‘𝐾) |
| dalem9.v | ⊢ 𝑉 = (LVols‘𝐾) |
| dalem9.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
| dalem9.z | ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) |
| dalem9.w | ⊢ 𝑊 = (𝑌 ∨ 𝐶) |
| Ref | Expression |
|---|---|
| dalem9 | ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → 𝑊 ∈ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dalem9.w | . 2 ⊢ 𝑊 = (𝑌 ∨ 𝐶) | |
| 2 | dalema.ph | . . . . 5 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | |
| 3 | 2 | dalemkehl 39606 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ HL) |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → 𝐾 ∈ HL) |
| 5 | 2 | dalemyeo 39615 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑂) |
| 6 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → 𝑌 ∈ 𝑂) |
| 7 | dalemc.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 8 | dalemc.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
| 9 | dalemc.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 10 | dalem9.o | . . . . 5 ⊢ 𝑂 = (LPlanes‘𝐾) | |
| 11 | dalem9.y | . . . . 5 ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) | |
| 12 | 2, 7, 8, 9, 10, 11 | dalemcea 39643 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
| 13 | 12 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → 𝐶 ∈ 𝐴) |
| 14 | dalem9.z | . . . 4 ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) | |
| 15 | 2, 7, 8, 9, 10, 11, 14 | dalem-cly 39654 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → ¬ 𝐶 ≤ 𝑌) |
| 16 | dalem9.v | . . . 4 ⊢ 𝑉 = (LVols‘𝐾) | |
| 17 | 7, 8, 9, 10, 16 | lvoli3 39560 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑌 ∈ 𝑂 ∧ 𝐶 ∈ 𝐴) ∧ ¬ 𝐶 ≤ 𝑌) → (𝑌 ∨ 𝐶) ∈ 𝑉) |
| 18 | 4, 6, 13, 15, 17 | syl31anc 1375 | . 2 ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → (𝑌 ∨ 𝐶) ∈ 𝑉) |
| 19 | 1, 18 | eqeltrid 2832 | 1 ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → 𝑊 ∈ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 lecple 17168 joincjn 18217 Atomscatm 39246 HLchlt 39333 LPlanesclpl 39475 LVolsclvol 39476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-lat 18338 df-clat 18405 df-oposet 39159 df-ol 39161 df-oml 39162 df-covers 39249 df-ats 39250 df-atl 39281 df-cvlat 39305 df-hlat 39334 df-llines 39481 df-lplanes 39482 df-lvols 39483 |
| This theorem is referenced by: dalem13 39659 dalem14 39660 |
| Copyright terms: Public domain | W3C validator |