|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dalem18 | Structured version Visualization version GIF version | ||
| Description: Lemma for dath 39738. Show that a dummy atom 𝑐 exists outside of the 𝑌 and 𝑍 planes (when those planes are equal). This requires that the projective space be 3-dimensional. (Desargues's theorem does not always hold in 2 dimensions.) (Contributed by NM, 29-Jul-2012.) | 
| Ref | Expression | 
|---|---|
| dalema.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | 
| dalemc.l | ⊢ ≤ = (le‘𝐾) | 
| dalemc.j | ⊢ ∨ = (join‘𝐾) | 
| dalemc.a | ⊢ 𝐴 = (Atoms‘𝐾) | 
| dalem18.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) | 
| Ref | Expression | 
|---|---|
| dalem18 | ⊢ (𝜑 → ∃𝑐 ∈ 𝐴 ¬ 𝑐 ≤ 𝑌) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dalema.ph | . . . 4 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | |
| 2 | 1 | dalemkehl 39625 | . . 3 ⊢ (𝜑 → 𝐾 ∈ HL) | 
| 3 | 1 | dalempea 39628 | . . 3 ⊢ (𝜑 → 𝑃 ∈ 𝐴) | 
| 4 | 1 | dalemqea 39629 | . . 3 ⊢ (𝜑 → 𝑄 ∈ 𝐴) | 
| 5 | 1 | dalemrea 39630 | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝐴) | 
| 6 | dalemc.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 7 | dalemc.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 8 | dalemc.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 9 | 6, 7, 8 | 3dim3 39471 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ∃𝑐 ∈ 𝐴 ¬ 𝑐 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) | 
| 10 | 2, 3, 4, 5, 9 | syl13anc 1374 | . 2 ⊢ (𝜑 → ∃𝑐 ∈ 𝐴 ¬ 𝑐 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) | 
| 11 | dalem18.y | . . . . 5 ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) | |
| 12 | 11 | breq2i 5151 | . . . 4 ⊢ (𝑐 ≤ 𝑌 ↔ 𝑐 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) | 
| 13 | 12 | notbii 320 | . . 3 ⊢ (¬ 𝑐 ≤ 𝑌 ↔ ¬ 𝑐 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) | 
| 14 | 13 | rexbii 3094 | . 2 ⊢ (∃𝑐 ∈ 𝐴 ¬ 𝑐 ≤ 𝑌 ↔ ∃𝑐 ∈ 𝐴 ¬ 𝑐 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) | 
| 15 | 10, 14 | sylibr 234 | 1 ⊢ (𝜑 → ∃𝑐 ∈ 𝐴 ¬ 𝑐 ≤ 𝑌) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∃wrex 3070 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 lecple 17304 joincjn 18357 Atomscatm 39264 HLchlt 39351 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-proset 18340 df-poset 18359 df-plt 18375 df-lub 18391 df-glb 18392 df-join 18393 df-meet 18394 df-p0 18470 df-p1 18471 df-lat 18477 df-clat 18544 df-oposet 39177 df-ol 39179 df-oml 39180 df-covers 39267 df-ats 39268 df-atl 39299 df-cvlat 39323 df-hlat 39352 | 
| This theorem is referenced by: dalem20 39695 | 
| Copyright terms: Public domain | W3C validator |