Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem18 Structured version   Visualization version   GIF version

Theorem dalem18 39790
Description: Lemma for dath 39845. Show that a dummy atom 𝑐 exists outside of the 𝑌 and 𝑍 planes (when those planes are equal). This requires that the projective space be 3-dimensional. (Desargues's theorem does not always hold in 2 dimensions.) (Contributed by NM, 29-Jul-2012.)
Hypotheses
Ref Expression
dalema.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalemc.l = (le‘𝐾)
dalemc.j = (join‘𝐾)
dalemc.a 𝐴 = (Atoms‘𝐾)
dalem18.y 𝑌 = ((𝑃 𝑄) 𝑅)
Assertion
Ref Expression
dalem18 (𝜑 → ∃𝑐𝐴 ¬ 𝑐 𝑌)
Distinct variable groups:   𝐴,𝑐   ,𝑐   ,𝑐   𝑃,𝑐   𝑄,𝑐   𝑅,𝑐
Allowed substitution hints:   𝜑(𝑐)   𝐶(𝑐)   𝑆(𝑐)   𝑇(𝑐)   𝑈(𝑐)   𝐾(𝑐)   𝑂(𝑐)   𝑌(𝑐)   𝑍(𝑐)

Proof of Theorem dalem18
StepHypRef Expression
1 dalema.ph . . . 4 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
21dalemkehl 39732 . . 3 (𝜑𝐾 ∈ HL)
31dalempea 39735 . . 3 (𝜑𝑃𝐴)
41dalemqea 39736 . . 3 (𝜑𝑄𝐴)
51dalemrea 39737 . . 3 (𝜑𝑅𝐴)
6 dalemc.j . . . 4 = (join‘𝐾)
7 dalemc.l . . . 4 = (le‘𝐾)
8 dalemc.a . . . 4 𝐴 = (Atoms‘𝐾)
96, 7, 83dim3 39578 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ∃𝑐𝐴 ¬ 𝑐 ((𝑃 𝑄) 𝑅))
102, 3, 4, 5, 9syl13anc 1374 . 2 (𝜑 → ∃𝑐𝐴 ¬ 𝑐 ((𝑃 𝑄) 𝑅))
11 dalem18.y . . . . 5 𝑌 = ((𝑃 𝑄) 𝑅)
1211breq2i 5097 . . . 4 (𝑐 𝑌𝑐 ((𝑃 𝑄) 𝑅))
1312notbii 320 . . 3 𝑐 𝑌 ↔ ¬ 𝑐 ((𝑃 𝑄) 𝑅))
1413rexbii 3079 . 2 (∃𝑐𝐴 ¬ 𝑐 𝑌 ↔ ∃𝑐𝐴 ¬ 𝑐 ((𝑃 𝑄) 𝑅))
1510, 14sylibr 234 1 (𝜑 → ∃𝑐𝐴 ¬ 𝑐 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wrex 3056   class class class wbr 5089  cfv 6481  (class class class)co 7346  Basecbs 17120  lecple 17168  joincjn 18217  Atomscatm 39372  HLchlt 39459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39285  df-ol 39287  df-oml 39288  df-covers 39375  df-ats 39376  df-atl 39407  df-cvlat 39431  df-hlat 39460
This theorem is referenced by:  dalem20  39802
  Copyright terms: Public domain W3C validator