| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dalem41 | Structured version Visualization version GIF version | ||
| Description: Lemma for dath 39679. (Contributed by NM, 4-Aug-2012.) |
| Ref | Expression |
|---|---|
| dalem.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
| dalem.l | ⊢ ≤ = (le‘𝐾) |
| dalem.j | ⊢ ∨ = (join‘𝐾) |
| dalem.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| dalem.ps | ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) |
| dalem38.m | ⊢ ∧ = (meet‘𝐾) |
| dalem38.o | ⊢ 𝑂 = (LPlanes‘𝐾) |
| dalem38.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
| dalem38.z | ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) |
| dalem38.g | ⊢ 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) |
| dalem38.h | ⊢ 𝐻 = ((𝑐 ∨ 𝑄) ∧ (𝑑 ∨ 𝑇)) |
| dalem38.i | ⊢ 𝐼 = ((𝑐 ∨ 𝑅) ∧ (𝑑 ∨ 𝑈)) |
| Ref | Expression |
|---|---|
| dalem41 | ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐺 ≠ 𝐻) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dalem.ph | . . . . 5 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | |
| 2 | 1 | dalemkehl 39566 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ HL) |
| 3 | 2 | 3ad2ant1 1133 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐾 ∈ HL) |
| 4 | dalem.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 5 | dalem.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 6 | dalem.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 7 | dalem.ps | . . . 4 ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) | |
| 8 | dalem38.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
| 9 | dalem38.o | . . . 4 ⊢ 𝑂 = (LPlanes‘𝐾) | |
| 10 | dalem38.y | . . . 4 ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) | |
| 11 | dalem38.z | . . . 4 ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) | |
| 12 | dalem38.h | . . . 4 ⊢ 𝐻 = ((𝑐 ∨ 𝑄) ∧ (𝑑 ∨ 𝑇)) | |
| 13 | 1, 4, 5, 6, 7, 8, 9, 10, 11, 12 | dalem29 39644 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐻 ∈ 𝐴) |
| 14 | dalem38.i | . . . 4 ⊢ 𝐼 = ((𝑐 ∨ 𝑅) ∧ (𝑑 ∨ 𝑈)) | |
| 15 | 1, 4, 5, 6, 7, 8, 9, 10, 11, 14 | dalem34 39649 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐼 ∈ 𝐴) |
| 16 | dalem38.g | . . . 4 ⊢ 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) | |
| 17 | 1, 4, 5, 6, 7, 8, 9, 10, 11, 16 | dalem23 39639 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐺 ∈ 𝐴) |
| 18 | 1, 4, 5, 6, 7, 8, 9, 10, 11, 16, 12, 14 | dalem39 39654 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ¬ 𝐻 ≤ (𝐼 ∨ 𝐺)) |
| 19 | 4, 5, 6 | atnlej2 39323 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝐻 ∈ 𝐴 ∧ 𝐼 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) ∧ ¬ 𝐻 ≤ (𝐼 ∨ 𝐺)) → 𝐻 ≠ 𝐺) |
| 20 | 3, 13, 15, 17, 18, 19 | syl131anc 1384 | . 2 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐻 ≠ 𝐺) |
| 21 | 20 | necomd 2986 | 1 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐺 ≠ 𝐻) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 class class class wbr 5125 ‘cfv 6542 (class class class)co 7414 Basecbs 17230 lecple 17284 joincjn 18332 meetcmee 18333 Atomscatm 39205 HLchlt 39292 LPlanesclpl 39435 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-proset 18315 df-poset 18334 df-plt 18349 df-lub 18365 df-glb 18366 df-join 18367 df-meet 18368 df-p0 18444 df-lat 18451 df-clat 18518 df-oposet 39118 df-ol 39120 df-oml 39121 df-covers 39208 df-ats 39209 df-atl 39240 df-cvlat 39264 df-hlat 39293 df-llines 39441 df-lplanes 39442 df-lvols 39443 |
| This theorem is referenced by: dalem42 39657 dalem54 39669 |
| Copyright terms: Public domain | W3C validator |