Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem15 Structured version   Visualization version   GIF version

Theorem dalem15 39675
Description: Lemma for dath 39733. The axis of perspectivity 𝑋 is a line. (Contributed by NM, 21-Jul-2012.)
Hypotheses
Ref Expression
dalema.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalemc.l = (le‘𝐾)
dalemc.j = (join‘𝐾)
dalemc.a 𝐴 = (Atoms‘𝐾)
dalem15.m = (meet‘𝐾)
dalem15.n 𝑁 = (LLines‘𝐾)
dalem15.o 𝑂 = (LPlanes‘𝐾)
dalem15.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem15.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem15.x 𝑋 = (𝑌 𝑍)
Assertion
Ref Expression
dalem15 ((𝜑𝑌𝑍) → 𝑋𝑁)

Proof of Theorem dalem15
StepHypRef Expression
1 dalem15.x . 2 𝑋 = (𝑌 𝑍)
2 dalema.ph . . . 4 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
3 dalemc.l . . . 4 = (le‘𝐾)
4 dalemc.j . . . 4 = (join‘𝐾)
5 dalemc.a . . . 4 𝐴 = (Atoms‘𝐾)
6 dalem15.o . . . 4 𝑂 = (LPlanes‘𝐾)
7 eqid 2737 . . . 4 (LVols‘𝐾) = (LVols‘𝐾)
8 dalem15.y . . . 4 𝑌 = ((𝑃 𝑄) 𝑅)
9 dalem15.z . . . 4 𝑍 = ((𝑆 𝑇) 𝑈)
10 eqid 2737 . . . 4 (𝑌 𝐶) = (𝑌 𝐶)
112, 3, 4, 5, 6, 7, 8, 9, 10dalem14 39674 . . 3 ((𝜑𝑌𝑍) → (𝑌 𝑍) ∈ (LVols‘𝐾))
122dalemkehl 39620 . . . . 5 (𝜑𝐾 ∈ HL)
132dalemyeo 39629 . . . . 5 (𝜑𝑌𝑂)
142dalemzeo 39630 . . . . 5 (𝜑𝑍𝑂)
15 dalem15.m . . . . . 6 = (meet‘𝐾)
16 dalem15.n . . . . . 6 𝑁 = (LLines‘𝐾)
174, 15, 16, 6, 72lplnmj 39619 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝑂𝑍𝑂) → ((𝑌 𝑍) ∈ 𝑁 ↔ (𝑌 𝑍) ∈ (LVols‘𝐾)))
1812, 13, 14, 17syl3anc 1372 . . . 4 (𝜑 → ((𝑌 𝑍) ∈ 𝑁 ↔ (𝑌 𝑍) ∈ (LVols‘𝐾)))
1918adantr 480 . . 3 ((𝜑𝑌𝑍) → ((𝑌 𝑍) ∈ 𝑁 ↔ (𝑌 𝑍) ∈ (LVols‘𝐾)))
2011, 19mpbird 257 . 2 ((𝜑𝑌𝑍) → (𝑌 𝑍) ∈ 𝑁)
211, 20eqeltrid 2845 1 ((𝜑𝑌𝑍) → 𝑋𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1539  wcel 2108  wne 2940   class class class wbr 5151  cfv 6569  (class class class)co 7438  Basecbs 17254  lecple 17314  joincjn 18378  meetcmee 18379  Atomscatm 39259  HLchlt 39346  LLinesclln 39488  LPlanesclpl 39489  LVolsclvol 39490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-proset 18361  df-poset 18380  df-plt 18397  df-lub 18413  df-glb 18414  df-join 18415  df-meet 18416  df-p0 18492  df-lat 18499  df-clat 18566  df-oposet 39172  df-ol 39174  df-oml 39175  df-covers 39262  df-ats 39263  df-atl 39294  df-cvlat 39318  df-hlat 39347  df-llines 39495  df-lplanes 39496  df-lvols 39497
This theorem is referenced by:  dalem16  39676  dalem53  39722
  Copyright terms: Public domain W3C validator