![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dalem15 | Structured version Visualization version GIF version |
Description: Lemma for dath 35812. The axis of perspectivity 𝑋 is a line. (Contributed by NM, 21-Jul-2012.) |
Ref | Expression |
---|---|
dalema.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
dalemc.l | ⊢ ≤ = (le‘𝐾) |
dalemc.j | ⊢ ∨ = (join‘𝐾) |
dalemc.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dalem15.m | ⊢ ∧ = (meet‘𝐾) |
dalem15.n | ⊢ 𝑁 = (LLines‘𝐾) |
dalem15.o | ⊢ 𝑂 = (LPlanes‘𝐾) |
dalem15.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
dalem15.z | ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) |
dalem15.x | ⊢ 𝑋 = (𝑌 ∧ 𝑍) |
Ref | Expression |
---|---|
dalem15 | ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → 𝑋 ∈ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalem15.x | . 2 ⊢ 𝑋 = (𝑌 ∧ 𝑍) | |
2 | dalema.ph | . . . 4 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | |
3 | dalemc.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
4 | dalemc.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
5 | dalemc.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | dalem15.o | . . . 4 ⊢ 𝑂 = (LPlanes‘𝐾) | |
7 | eqid 2826 | . . . 4 ⊢ (LVols‘𝐾) = (LVols‘𝐾) | |
8 | dalem15.y | . . . 4 ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) | |
9 | dalem15.z | . . . 4 ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) | |
10 | eqid 2826 | . . . 4 ⊢ (𝑌 ∨ 𝐶) = (𝑌 ∨ 𝐶) | |
11 | 2, 3, 4, 5, 6, 7, 8, 9, 10 | dalem14 35753 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → (𝑌 ∨ 𝑍) ∈ (LVols‘𝐾)) |
12 | 2 | dalemkehl 35699 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ HL) |
13 | 2 | dalemyeo 35708 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑂) |
14 | 2 | dalemzeo 35709 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ 𝑂) |
15 | dalem15.m | . . . . . 6 ⊢ ∧ = (meet‘𝐾) | |
16 | dalem15.n | . . . . . 6 ⊢ 𝑁 = (LLines‘𝐾) | |
17 | 4, 15, 16, 6, 7 | 2lplnmj 35698 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) → ((𝑌 ∧ 𝑍) ∈ 𝑁 ↔ (𝑌 ∨ 𝑍) ∈ (LVols‘𝐾))) |
18 | 12, 13, 14, 17 | syl3anc 1496 | . . . 4 ⊢ (𝜑 → ((𝑌 ∧ 𝑍) ∈ 𝑁 ↔ (𝑌 ∨ 𝑍) ∈ (LVols‘𝐾))) |
19 | 18 | adantr 474 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → ((𝑌 ∧ 𝑍) ∈ 𝑁 ↔ (𝑌 ∨ 𝑍) ∈ (LVols‘𝐾))) |
20 | 11, 19 | mpbird 249 | . 2 ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → (𝑌 ∧ 𝑍) ∈ 𝑁) |
21 | 1, 20 | syl5eqel 2911 | 1 ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → 𝑋 ∈ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1113 = wceq 1658 ∈ wcel 2166 ≠ wne 3000 class class class wbr 4874 ‘cfv 6124 (class class class)co 6906 Basecbs 16223 lecple 16313 joincjn 17298 meetcmee 17299 Atomscatm 35339 HLchlt 35426 LLinesclln 35567 LPlanesclpl 35568 LVolsclvol 35569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-rep 4995 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-ral 3123 df-rex 3124 df-reu 3125 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4660 df-iun 4743 df-br 4875 df-opab 4937 df-mpt 4954 df-id 5251 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-riota 6867 df-ov 6909 df-oprab 6910 df-proset 17282 df-poset 17300 df-plt 17312 df-lub 17328 df-glb 17329 df-join 17330 df-meet 17331 df-p0 17393 df-lat 17400 df-clat 17462 df-oposet 35252 df-ol 35254 df-oml 35255 df-covers 35342 df-ats 35343 df-atl 35374 df-cvlat 35398 df-hlat 35427 df-llines 35574 df-lplanes 35575 df-lvols 35576 |
This theorem is referenced by: dalem16 35755 dalem53 35801 |
Copyright terms: Public domain | W3C validator |