| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dalem15 | Structured version Visualization version GIF version | ||
| Description: Lemma for dath 39845. The axis of perspectivity 𝑋 is a line. (Contributed by NM, 21-Jul-2012.) |
| Ref | Expression |
|---|---|
| dalema.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
| dalemc.l | ⊢ ≤ = (le‘𝐾) |
| dalemc.j | ⊢ ∨ = (join‘𝐾) |
| dalemc.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| dalem15.m | ⊢ ∧ = (meet‘𝐾) |
| dalem15.n | ⊢ 𝑁 = (LLines‘𝐾) |
| dalem15.o | ⊢ 𝑂 = (LPlanes‘𝐾) |
| dalem15.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
| dalem15.z | ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) |
| dalem15.x | ⊢ 𝑋 = (𝑌 ∧ 𝑍) |
| Ref | Expression |
|---|---|
| dalem15 | ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → 𝑋 ∈ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dalem15.x | . 2 ⊢ 𝑋 = (𝑌 ∧ 𝑍) | |
| 2 | dalema.ph | . . . 4 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | |
| 3 | dalemc.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 4 | dalemc.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 5 | dalemc.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 6 | dalem15.o | . . . 4 ⊢ 𝑂 = (LPlanes‘𝐾) | |
| 7 | eqid 2731 | . . . 4 ⊢ (LVols‘𝐾) = (LVols‘𝐾) | |
| 8 | dalem15.y | . . . 4 ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) | |
| 9 | dalem15.z | . . . 4 ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) | |
| 10 | eqid 2731 | . . . 4 ⊢ (𝑌 ∨ 𝐶) = (𝑌 ∨ 𝐶) | |
| 11 | 2, 3, 4, 5, 6, 7, 8, 9, 10 | dalem14 39786 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → (𝑌 ∨ 𝑍) ∈ (LVols‘𝐾)) |
| 12 | 2 | dalemkehl 39732 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ HL) |
| 13 | 2 | dalemyeo 39741 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑂) |
| 14 | 2 | dalemzeo 39742 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ 𝑂) |
| 15 | dalem15.m | . . . . . 6 ⊢ ∧ = (meet‘𝐾) | |
| 16 | dalem15.n | . . . . . 6 ⊢ 𝑁 = (LLines‘𝐾) | |
| 17 | 4, 15, 16, 6, 7 | 2lplnmj 39731 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) → ((𝑌 ∧ 𝑍) ∈ 𝑁 ↔ (𝑌 ∨ 𝑍) ∈ (LVols‘𝐾))) |
| 18 | 12, 13, 14, 17 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → ((𝑌 ∧ 𝑍) ∈ 𝑁 ↔ (𝑌 ∨ 𝑍) ∈ (LVols‘𝐾))) |
| 19 | 18 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → ((𝑌 ∧ 𝑍) ∈ 𝑁 ↔ (𝑌 ∨ 𝑍) ∈ (LVols‘𝐾))) |
| 20 | 11, 19 | mpbird 257 | . 2 ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → (𝑌 ∧ 𝑍) ∈ 𝑁) |
| 21 | 1, 20 | eqeltrid 2835 | 1 ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → 𝑋 ∈ 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 lecple 17168 joincjn 18217 meetcmee 18218 Atomscatm 39372 HLchlt 39459 LLinesclln 39600 LPlanesclpl 39601 LVolsclvol 39602 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-lat 18338 df-clat 18405 df-oposet 39285 df-ol 39287 df-oml 39288 df-covers 39375 df-ats 39376 df-atl 39407 df-cvlat 39431 df-hlat 39460 df-llines 39607 df-lplanes 39608 df-lvols 39609 |
| This theorem is referenced by: dalem16 39788 dalem53 39834 |
| Copyright terms: Public domain | W3C validator |