| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dalem8 | Structured version Visualization version GIF version | ||
| Description: Lemma for dath 39755. Plane 𝑍 belongs to the 3-dimensional space. (Contributed by NM, 21-Jul-2012.) |
| Ref | Expression |
|---|---|
| dalema.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
| dalemc.l | ⊢ ≤ = (le‘𝐾) |
| dalemc.j | ⊢ ∨ = (join‘𝐾) |
| dalemc.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| dalem6.o | ⊢ 𝑂 = (LPlanes‘𝐾) |
| dalem6.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
| dalem6.z | ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) |
| dalem6.w | ⊢ 𝑊 = (𝑌 ∨ 𝐶) |
| Ref | Expression |
|---|---|
| dalem8 | ⊢ (𝜑 → 𝑍 ≤ 𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dalem6.z | . 2 ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) | |
| 2 | dalema.ph | . . . . 5 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | |
| 3 | dalemc.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 4 | dalemc.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
| 5 | dalemc.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 6 | dalem6.o | . . . . 5 ⊢ 𝑂 = (LPlanes‘𝐾) | |
| 7 | dalem6.y | . . . . 5 ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) | |
| 8 | dalem6.w | . . . . 5 ⊢ 𝑊 = (𝑌 ∨ 𝐶) | |
| 9 | 2, 3, 4, 5, 6, 7, 1, 8 | dalem6 39687 | . . . 4 ⊢ (𝜑 → 𝑆 ≤ 𝑊) |
| 10 | 2, 3, 4, 5, 6, 7, 1, 8 | dalem7 39688 | . . . 4 ⊢ (𝜑 → 𝑇 ≤ 𝑊) |
| 11 | 2 | dalemkelat 39643 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Lat) |
| 12 | 2, 5 | dalemseb 39661 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ (Base‘𝐾)) |
| 13 | 2, 5 | dalemteb 39662 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ (Base‘𝐾)) |
| 14 | 2, 6 | dalemyeb 39668 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐾)) |
| 15 | 2, 5 | dalemceb 39657 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ (Base‘𝐾)) |
| 16 | eqid 2735 | . . . . . . . 8 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 17 | 16, 4 | latjcl 18449 | . . . . . . 7 ⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝐶 ∈ (Base‘𝐾)) → (𝑌 ∨ 𝐶) ∈ (Base‘𝐾)) |
| 18 | 11, 14, 15, 17 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → (𝑌 ∨ 𝐶) ∈ (Base‘𝐾)) |
| 19 | 8, 18 | eqeltrid 2838 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ (Base‘𝐾)) |
| 20 | 16, 3, 4 | latjle12 18460 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑆 ≤ 𝑊 ∧ 𝑇 ≤ 𝑊) ↔ (𝑆 ∨ 𝑇) ≤ 𝑊)) |
| 21 | 11, 12, 13, 19, 20 | syl13anc 1374 | . . . 4 ⊢ (𝜑 → ((𝑆 ≤ 𝑊 ∧ 𝑇 ≤ 𝑊) ↔ (𝑆 ∨ 𝑇) ≤ 𝑊)) |
| 22 | 9, 10, 21 | mpbi2and 712 | . . 3 ⊢ (𝜑 → (𝑆 ∨ 𝑇) ≤ 𝑊) |
| 23 | 2, 3, 4, 5, 6, 7, 8 | dalem5 39686 | . . 3 ⊢ (𝜑 → 𝑈 ≤ 𝑊) |
| 24 | 2, 4, 5 | dalemsjteb 39665 | . . . 4 ⊢ (𝜑 → (𝑆 ∨ 𝑇) ∈ (Base‘𝐾)) |
| 25 | 2, 5 | dalemueb 39663 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ (Base‘𝐾)) |
| 26 | 16, 3, 4 | latjle12 18460 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ ((𝑆 ∨ 𝑇) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → (((𝑆 ∨ 𝑇) ≤ 𝑊 ∧ 𝑈 ≤ 𝑊) ↔ ((𝑆 ∨ 𝑇) ∨ 𝑈) ≤ 𝑊)) |
| 27 | 11, 24, 25, 19, 26 | syl13anc 1374 | . . 3 ⊢ (𝜑 → (((𝑆 ∨ 𝑇) ≤ 𝑊 ∧ 𝑈 ≤ 𝑊) ↔ ((𝑆 ∨ 𝑇) ∨ 𝑈) ≤ 𝑊)) |
| 28 | 22, 23, 27 | mpbi2and 712 | . 2 ⊢ (𝜑 → ((𝑆 ∨ 𝑇) ∨ 𝑈) ≤ 𝑊) |
| 29 | 1, 28 | eqbrtrid 5154 | 1 ⊢ (𝜑 → 𝑍 ≤ 𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 lecple 17278 joincjn 18323 Latclat 18441 Atomscatm 39281 HLchlt 39368 LPlanesclpl 39511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-proset 18306 df-poset 18325 df-plt 18340 df-lub 18356 df-glb 18357 df-join 18358 df-meet 18359 df-p0 18435 df-lat 18442 df-clat 18509 df-oposet 39194 df-ol 39196 df-oml 39197 df-covers 39284 df-ats 39285 df-atl 39316 df-cvlat 39340 df-hlat 39369 df-llines 39517 df-lplanes 39518 |
| This theorem is referenced by: dalem13 39695 |
| Copyright terms: Public domain | W3C validator |