| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > halfpm6th | Structured version Visualization version GIF version | ||
| Description: One half plus or minus one sixth. (Contributed by Paul Chapman, 17-Jan-2008.) (Proof shortened by SN, 22-Oct-2025.) |
| Ref | Expression |
|---|---|
| halfpm6th | ⊢ (((1 / 2) − (1 / 6)) = (1 / 3) ∧ ((1 / 2) + (1 / 6)) = (2 / 3)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3cn 12206 | . . . 4 ⊢ 3 ∈ ℂ | |
| 2 | 3ne0 12231 | . . . 4 ⊢ 3 ≠ 0 | |
| 3 | 1, 2 | reccli 11851 | . . 3 ⊢ (1 / 3) ∈ ℂ |
| 4 | 6cn 12216 | . . . 4 ⊢ 6 ∈ ℂ | |
| 5 | 6re 12215 | . . . . 5 ⊢ 6 ∈ ℝ | |
| 6 | 6pos 12235 | . . . . 5 ⊢ 0 < 6 | |
| 7 | 5, 6 | gt0ne0ii 11653 | . . . 4 ⊢ 6 ≠ 0 |
| 8 | 4, 7 | reccli 11851 | . . 3 ⊢ (1 / 6) ∈ ℂ |
| 9 | halfcn 12335 | . . . . 5 ⊢ (1 / 2) ∈ ℂ | |
| 10 | 3, 9 | pncan3i 11438 | . . . 4 ⊢ ((1 / 3) + ((1 / 2) − (1 / 3))) = (1 / 2) |
| 11 | halfthird 12342 | . . . . 5 ⊢ ((1 / 2) − (1 / 3)) = (1 / 6) | |
| 12 | 11 | oveq2i 7357 | . . . 4 ⊢ ((1 / 3) + ((1 / 2) − (1 / 3))) = ((1 / 3) + (1 / 6)) |
| 13 | 10, 12 | eqtr3i 2756 | . . 3 ⊢ (1 / 2) = ((1 / 3) + (1 / 6)) |
| 14 | 3, 8, 13 | mvrraddi 11377 | . 2 ⊢ ((1 / 2) − (1 / 6)) = (1 / 3) |
| 15 | 11 | oveq2i 7357 | . . 3 ⊢ ((1 / 2) + ((1 / 2) − (1 / 3))) = ((1 / 2) + (1 / 6)) |
| 16 | 9, 9, 3 | addsubassi 11452 | . . . 4 ⊢ (((1 / 2) + (1 / 2)) − (1 / 3)) = ((1 / 2) + ((1 / 2) − (1 / 3))) |
| 17 | 2cn 12200 | . . . . . 6 ⊢ 2 ∈ ℂ | |
| 18 | 17, 1, 2 | divcli 11863 | . . . . 5 ⊢ (2 / 3) ∈ ℂ |
| 19 | ax-1cn 11064 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
| 20 | 2halves 12339 | . . . . . . 7 ⊢ (1 ∈ ℂ → ((1 / 2) + (1 / 2)) = 1) | |
| 21 | 19, 20 | ax-mp 5 | . . . . . 6 ⊢ ((1 / 2) + (1 / 2)) = 1 |
| 22 | 2p1e3 12262 | . . . . . . . 8 ⊢ (2 + 1) = 3 | |
| 23 | 22 | oveq1i 7356 | . . . . . . 7 ⊢ ((2 + 1) / 3) = (3 / 3) |
| 24 | 1, 2 | dividi 11854 | . . . . . . 7 ⊢ (3 / 3) = 1 |
| 25 | 23, 24 | eqtri 2754 | . . . . . 6 ⊢ ((2 + 1) / 3) = 1 |
| 26 | 17, 19, 1, 2 | divdiri 11878 | . . . . . 6 ⊢ ((2 + 1) / 3) = ((2 / 3) + (1 / 3)) |
| 27 | 21, 25, 26 | 3eqtr2i 2760 | . . . . 5 ⊢ ((1 / 2) + (1 / 2)) = ((2 / 3) + (1 / 3)) |
| 28 | 18, 3, 27 | mvrraddi 11377 | . . . 4 ⊢ (((1 / 2) + (1 / 2)) − (1 / 3)) = (2 / 3) |
| 29 | 16, 28 | eqtr3i 2756 | . . 3 ⊢ ((1 / 2) + ((1 / 2) − (1 / 3))) = (2 / 3) |
| 30 | 15, 29 | eqtr3i 2756 | . 2 ⊢ ((1 / 2) + (1 / 6)) = (2 / 3) |
| 31 | 14, 30 | pm3.2i 470 | 1 ⊢ (((1 / 2) − (1 / 6)) = (1 / 3) ∧ ((1 / 2) + (1 / 6)) = (2 / 3)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 (class class class)co 7346 ℂcc 11004 1c1 11007 + caddc 11009 − cmin 11344 / cdiv 11774 2c2 12180 3c3 12181 6c6 12184 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 |
| This theorem is referenced by: cos01bnd 16095 1cubrlem 26778 |
| Copyright terms: Public domain | W3C validator |