| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > halfpm6th | Structured version Visualization version GIF version | ||
| Description: One half plus or minus one sixth. (Contributed by Paul Chapman, 17-Jan-2008.) (Proof shortened by SN, 22-Oct-2025.) |
| Ref | Expression |
|---|---|
| halfpm6th | ⊢ (((1 / 2) − (1 / 6)) = (1 / 3) ∧ ((1 / 2) + (1 / 6)) = (2 / 3)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3cn 12243 | . . . 4 ⊢ 3 ∈ ℂ | |
| 2 | 3ne0 12268 | . . . 4 ⊢ 3 ≠ 0 | |
| 3 | 1, 2 | reccli 11888 | . . 3 ⊢ (1 / 3) ∈ ℂ |
| 4 | 6cn 12253 | . . . 4 ⊢ 6 ∈ ℂ | |
| 5 | 6re 12252 | . . . . 5 ⊢ 6 ∈ ℝ | |
| 6 | 6pos 12272 | . . . . 5 ⊢ 0 < 6 | |
| 7 | 5, 6 | gt0ne0ii 11690 | . . . 4 ⊢ 6 ≠ 0 |
| 8 | 4, 7 | reccli 11888 | . . 3 ⊢ (1 / 6) ∈ ℂ |
| 9 | halfcn 12372 | . . . . 5 ⊢ (1 / 2) ∈ ℂ | |
| 10 | 3, 9 | pncan3i 11475 | . . . 4 ⊢ ((1 / 3) + ((1 / 2) − (1 / 3))) = (1 / 2) |
| 11 | halfthird 12379 | . . . . 5 ⊢ ((1 / 2) − (1 / 3)) = (1 / 6) | |
| 12 | 11 | oveq2i 7380 | . . . 4 ⊢ ((1 / 3) + ((1 / 2) − (1 / 3))) = ((1 / 3) + (1 / 6)) |
| 13 | 10, 12 | eqtr3i 2754 | . . 3 ⊢ (1 / 2) = ((1 / 3) + (1 / 6)) |
| 14 | 3, 8, 13 | mvrraddi 11414 | . 2 ⊢ ((1 / 2) − (1 / 6)) = (1 / 3) |
| 15 | 11 | oveq2i 7380 | . . 3 ⊢ ((1 / 2) + ((1 / 2) − (1 / 3))) = ((1 / 2) + (1 / 6)) |
| 16 | 9, 9, 3 | addsubassi 11489 | . . . 4 ⊢ (((1 / 2) + (1 / 2)) − (1 / 3)) = ((1 / 2) + ((1 / 2) − (1 / 3))) |
| 17 | 2cn 12237 | . . . . . 6 ⊢ 2 ∈ ℂ | |
| 18 | 17, 1, 2 | divcli 11900 | . . . . 5 ⊢ (2 / 3) ∈ ℂ |
| 19 | ax-1cn 11102 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
| 20 | 2halves 12376 | . . . . . . 7 ⊢ (1 ∈ ℂ → ((1 / 2) + (1 / 2)) = 1) | |
| 21 | 19, 20 | ax-mp 5 | . . . . . 6 ⊢ ((1 / 2) + (1 / 2)) = 1 |
| 22 | 2p1e3 12299 | . . . . . . . 8 ⊢ (2 + 1) = 3 | |
| 23 | 22 | oveq1i 7379 | . . . . . . 7 ⊢ ((2 + 1) / 3) = (3 / 3) |
| 24 | 1, 2 | dividi 11891 | . . . . . . 7 ⊢ (3 / 3) = 1 |
| 25 | 23, 24 | eqtri 2752 | . . . . . 6 ⊢ ((2 + 1) / 3) = 1 |
| 26 | 17, 19, 1, 2 | divdiri 11915 | . . . . . 6 ⊢ ((2 + 1) / 3) = ((2 / 3) + (1 / 3)) |
| 27 | 21, 25, 26 | 3eqtr2i 2758 | . . . . 5 ⊢ ((1 / 2) + (1 / 2)) = ((2 / 3) + (1 / 3)) |
| 28 | 18, 3, 27 | mvrraddi 11414 | . . . 4 ⊢ (((1 / 2) + (1 / 2)) − (1 / 3)) = (2 / 3) |
| 29 | 16, 28 | eqtr3i 2754 | . . 3 ⊢ ((1 / 2) + ((1 / 2) − (1 / 3))) = (2 / 3) |
| 30 | 15, 29 | eqtr3i 2754 | . 2 ⊢ ((1 / 2) + (1 / 6)) = (2 / 3) |
| 31 | 14, 30 | pm3.2i 470 | 1 ⊢ (((1 / 2) − (1 / 6)) = (1 / 3) ∧ ((1 / 2) + (1 / 6)) = (2 / 3)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 (class class class)co 7369 ℂcc 11042 1c1 11045 + caddc 11047 − cmin 11381 / cdiv 11811 2c2 12217 3c3 12218 6c6 12221 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 |
| This theorem is referenced by: cos01bnd 16130 1cubrlem 26727 |
| Copyright terms: Public domain | W3C validator |