| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > halfpm6th | Structured version Visualization version GIF version | ||
| Description: One half plus or minus one sixth. (Contributed by Paul Chapman, 17-Jan-2008.) (Proof shortened by SN, 22-Oct-2025.) |
| Ref | Expression |
|---|---|
| halfpm6th | ⊢ (((1 / 2) − (1 / 6)) = (1 / 3) ∧ ((1 / 2) + (1 / 6)) = (2 / 3)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3cn 12274 | . . . 4 ⊢ 3 ∈ ℂ | |
| 2 | 3ne0 12299 | . . . 4 ⊢ 3 ≠ 0 | |
| 3 | 1, 2 | reccli 11919 | . . 3 ⊢ (1 / 3) ∈ ℂ |
| 4 | 6cn 12284 | . . . 4 ⊢ 6 ∈ ℂ | |
| 5 | 6re 12283 | . . . . 5 ⊢ 6 ∈ ℝ | |
| 6 | 6pos 12303 | . . . . 5 ⊢ 0 < 6 | |
| 7 | 5, 6 | gt0ne0ii 11721 | . . . 4 ⊢ 6 ≠ 0 |
| 8 | 4, 7 | reccli 11919 | . . 3 ⊢ (1 / 6) ∈ ℂ |
| 9 | halfcn 12403 | . . . . 5 ⊢ (1 / 2) ∈ ℂ | |
| 10 | 3, 9 | pncan3i 11506 | . . . 4 ⊢ ((1 / 3) + ((1 / 2) − (1 / 3))) = (1 / 2) |
| 11 | halfthird 12410 | . . . . 5 ⊢ ((1 / 2) − (1 / 3)) = (1 / 6) | |
| 12 | 11 | oveq2i 7401 | . . . 4 ⊢ ((1 / 3) + ((1 / 2) − (1 / 3))) = ((1 / 3) + (1 / 6)) |
| 13 | 10, 12 | eqtr3i 2755 | . . 3 ⊢ (1 / 2) = ((1 / 3) + (1 / 6)) |
| 14 | 3, 8, 13 | mvrraddi 11445 | . 2 ⊢ ((1 / 2) − (1 / 6)) = (1 / 3) |
| 15 | 11 | oveq2i 7401 | . . 3 ⊢ ((1 / 2) + ((1 / 2) − (1 / 3))) = ((1 / 2) + (1 / 6)) |
| 16 | 9, 9, 3 | addsubassi 11520 | . . . 4 ⊢ (((1 / 2) + (1 / 2)) − (1 / 3)) = ((1 / 2) + ((1 / 2) − (1 / 3))) |
| 17 | 2cn 12268 | . . . . . 6 ⊢ 2 ∈ ℂ | |
| 18 | 17, 1, 2 | divcli 11931 | . . . . 5 ⊢ (2 / 3) ∈ ℂ |
| 19 | ax-1cn 11133 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
| 20 | 2halves 12407 | . . . . . . 7 ⊢ (1 ∈ ℂ → ((1 / 2) + (1 / 2)) = 1) | |
| 21 | 19, 20 | ax-mp 5 | . . . . . 6 ⊢ ((1 / 2) + (1 / 2)) = 1 |
| 22 | 2p1e3 12330 | . . . . . . . 8 ⊢ (2 + 1) = 3 | |
| 23 | 22 | oveq1i 7400 | . . . . . . 7 ⊢ ((2 + 1) / 3) = (3 / 3) |
| 24 | 1, 2 | dividi 11922 | . . . . . . 7 ⊢ (3 / 3) = 1 |
| 25 | 23, 24 | eqtri 2753 | . . . . . 6 ⊢ ((2 + 1) / 3) = 1 |
| 26 | 17, 19, 1, 2 | divdiri 11946 | . . . . . 6 ⊢ ((2 + 1) / 3) = ((2 / 3) + (1 / 3)) |
| 27 | 21, 25, 26 | 3eqtr2i 2759 | . . . . 5 ⊢ ((1 / 2) + (1 / 2)) = ((2 / 3) + (1 / 3)) |
| 28 | 18, 3, 27 | mvrraddi 11445 | . . . 4 ⊢ (((1 / 2) + (1 / 2)) − (1 / 3)) = (2 / 3) |
| 29 | 16, 28 | eqtr3i 2755 | . . 3 ⊢ ((1 / 2) + ((1 / 2) − (1 / 3))) = (2 / 3) |
| 30 | 15, 29 | eqtr3i 2755 | . 2 ⊢ ((1 / 2) + (1 / 6)) = (2 / 3) |
| 31 | 14, 30 | pm3.2i 470 | 1 ⊢ (((1 / 2) − (1 / 6)) = (1 / 3) ∧ ((1 / 2) + (1 / 6)) = (2 / 3)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 (class class class)co 7390 ℂcc 11073 1c1 11076 + caddc 11078 − cmin 11412 / cdiv 11842 2c2 12248 3c3 12249 6c6 12252 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 |
| This theorem is referenced by: cos01bnd 16161 1cubrlem 26758 |
| Copyright terms: Public domain | W3C validator |