| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > halfpm6th | Structured version Visualization version GIF version | ||
| Description: One half plus or minus one sixth. (Contributed by Paul Chapman, 17-Jan-2008.) (Proof shortened by SN, 22-Oct-2025.) |
| Ref | Expression |
|---|---|
| halfpm6th | ⊢ (((1 / 2) − (1 / 6)) = (1 / 3) ∧ ((1 / 2) + (1 / 6)) = (2 / 3)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3cn 12209 | . . . 4 ⊢ 3 ∈ ℂ | |
| 2 | 3ne0 12234 | . . . 4 ⊢ 3 ≠ 0 | |
| 3 | 1, 2 | reccli 11854 | . . 3 ⊢ (1 / 3) ∈ ℂ |
| 4 | 6cn 12219 | . . . 4 ⊢ 6 ∈ ℂ | |
| 5 | 6re 12218 | . . . . 5 ⊢ 6 ∈ ℝ | |
| 6 | 6pos 12238 | . . . . 5 ⊢ 0 < 6 | |
| 7 | 5, 6 | gt0ne0ii 11656 | . . . 4 ⊢ 6 ≠ 0 |
| 8 | 4, 7 | reccli 11854 | . . 3 ⊢ (1 / 6) ∈ ℂ |
| 9 | halfcn 12338 | . . . . 5 ⊢ (1 / 2) ∈ ℂ | |
| 10 | 3, 9 | pncan3i 11441 | . . . 4 ⊢ ((1 / 3) + ((1 / 2) − (1 / 3))) = (1 / 2) |
| 11 | halfthird 12345 | . . . . 5 ⊢ ((1 / 2) − (1 / 3)) = (1 / 6) | |
| 12 | 11 | oveq2i 7360 | . . . 4 ⊢ ((1 / 3) + ((1 / 2) − (1 / 3))) = ((1 / 3) + (1 / 6)) |
| 13 | 10, 12 | eqtr3i 2754 | . . 3 ⊢ (1 / 2) = ((1 / 3) + (1 / 6)) |
| 14 | 3, 8, 13 | mvrraddi 11380 | . 2 ⊢ ((1 / 2) − (1 / 6)) = (1 / 3) |
| 15 | 11 | oveq2i 7360 | . . 3 ⊢ ((1 / 2) + ((1 / 2) − (1 / 3))) = ((1 / 2) + (1 / 6)) |
| 16 | 9, 9, 3 | addsubassi 11455 | . . . 4 ⊢ (((1 / 2) + (1 / 2)) − (1 / 3)) = ((1 / 2) + ((1 / 2) − (1 / 3))) |
| 17 | 2cn 12203 | . . . . . 6 ⊢ 2 ∈ ℂ | |
| 18 | 17, 1, 2 | divcli 11866 | . . . . 5 ⊢ (2 / 3) ∈ ℂ |
| 19 | ax-1cn 11067 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
| 20 | 2halves 12342 | . . . . . . 7 ⊢ (1 ∈ ℂ → ((1 / 2) + (1 / 2)) = 1) | |
| 21 | 19, 20 | ax-mp 5 | . . . . . 6 ⊢ ((1 / 2) + (1 / 2)) = 1 |
| 22 | 2p1e3 12265 | . . . . . . . 8 ⊢ (2 + 1) = 3 | |
| 23 | 22 | oveq1i 7359 | . . . . . . 7 ⊢ ((2 + 1) / 3) = (3 / 3) |
| 24 | 1, 2 | dividi 11857 | . . . . . . 7 ⊢ (3 / 3) = 1 |
| 25 | 23, 24 | eqtri 2752 | . . . . . 6 ⊢ ((2 + 1) / 3) = 1 |
| 26 | 17, 19, 1, 2 | divdiri 11881 | . . . . . 6 ⊢ ((2 + 1) / 3) = ((2 / 3) + (1 / 3)) |
| 27 | 21, 25, 26 | 3eqtr2i 2758 | . . . . 5 ⊢ ((1 / 2) + (1 / 2)) = ((2 / 3) + (1 / 3)) |
| 28 | 18, 3, 27 | mvrraddi 11380 | . . . 4 ⊢ (((1 / 2) + (1 / 2)) − (1 / 3)) = (2 / 3) |
| 29 | 16, 28 | eqtr3i 2754 | . . 3 ⊢ ((1 / 2) + ((1 / 2) − (1 / 3))) = (2 / 3) |
| 30 | 15, 29 | eqtr3i 2754 | . 2 ⊢ ((1 / 2) + (1 / 6)) = (2 / 3) |
| 31 | 14, 30 | pm3.2i 470 | 1 ⊢ (((1 / 2) − (1 / 6)) = (1 / 3) ∧ ((1 / 2) + (1 / 6)) = (2 / 3)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 (class class class)co 7349 ℂcc 11007 1c1 11010 + caddc 11012 − cmin 11347 / cdiv 11777 2c2 12183 3c3 12184 6c6 12187 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 |
| This theorem is referenced by: cos01bnd 16095 1cubrlem 26749 |
| Copyright terms: Public domain | W3C validator |