| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > halfpm6th | Structured version Visualization version GIF version | ||
| Description: One half plus or minus one sixth. (Contributed by Paul Chapman, 17-Jan-2008.) (Proof shortened by SN, 22-Oct-2025.) |
| Ref | Expression |
|---|---|
| halfpm6th | ⊢ (((1 / 2) − (1 / 6)) = (1 / 3) ∧ ((1 / 2) + (1 / 6)) = (2 / 3)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3cn 12267 | . . . 4 ⊢ 3 ∈ ℂ | |
| 2 | 3ne0 12292 | . . . 4 ⊢ 3 ≠ 0 | |
| 3 | 1, 2 | reccli 11912 | . . 3 ⊢ (1 / 3) ∈ ℂ |
| 4 | 6cn 12277 | . . . 4 ⊢ 6 ∈ ℂ | |
| 5 | 6re 12276 | . . . . 5 ⊢ 6 ∈ ℝ | |
| 6 | 6pos 12296 | . . . . 5 ⊢ 0 < 6 | |
| 7 | 5, 6 | gt0ne0ii 11714 | . . . 4 ⊢ 6 ≠ 0 |
| 8 | 4, 7 | reccli 11912 | . . 3 ⊢ (1 / 6) ∈ ℂ |
| 9 | halfcn 12396 | . . . . 5 ⊢ (1 / 2) ∈ ℂ | |
| 10 | 3, 9 | pncan3i 11499 | . . . 4 ⊢ ((1 / 3) + ((1 / 2) − (1 / 3))) = (1 / 2) |
| 11 | halfthird 12403 | . . . . 5 ⊢ ((1 / 2) − (1 / 3)) = (1 / 6) | |
| 12 | 11 | oveq2i 7398 | . . . 4 ⊢ ((1 / 3) + ((1 / 2) − (1 / 3))) = ((1 / 3) + (1 / 6)) |
| 13 | 10, 12 | eqtr3i 2754 | . . 3 ⊢ (1 / 2) = ((1 / 3) + (1 / 6)) |
| 14 | 3, 8, 13 | mvrraddi 11438 | . 2 ⊢ ((1 / 2) − (1 / 6)) = (1 / 3) |
| 15 | 11 | oveq2i 7398 | . . 3 ⊢ ((1 / 2) + ((1 / 2) − (1 / 3))) = ((1 / 2) + (1 / 6)) |
| 16 | 9, 9, 3 | addsubassi 11513 | . . . 4 ⊢ (((1 / 2) + (1 / 2)) − (1 / 3)) = ((1 / 2) + ((1 / 2) − (1 / 3))) |
| 17 | 2cn 12261 | . . . . . 6 ⊢ 2 ∈ ℂ | |
| 18 | 17, 1, 2 | divcli 11924 | . . . . 5 ⊢ (2 / 3) ∈ ℂ |
| 19 | ax-1cn 11126 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
| 20 | 2halves 12400 | . . . . . . 7 ⊢ (1 ∈ ℂ → ((1 / 2) + (1 / 2)) = 1) | |
| 21 | 19, 20 | ax-mp 5 | . . . . . 6 ⊢ ((1 / 2) + (1 / 2)) = 1 |
| 22 | 2p1e3 12323 | . . . . . . . 8 ⊢ (2 + 1) = 3 | |
| 23 | 22 | oveq1i 7397 | . . . . . . 7 ⊢ ((2 + 1) / 3) = (3 / 3) |
| 24 | 1, 2 | dividi 11915 | . . . . . . 7 ⊢ (3 / 3) = 1 |
| 25 | 23, 24 | eqtri 2752 | . . . . . 6 ⊢ ((2 + 1) / 3) = 1 |
| 26 | 17, 19, 1, 2 | divdiri 11939 | . . . . . 6 ⊢ ((2 + 1) / 3) = ((2 / 3) + (1 / 3)) |
| 27 | 21, 25, 26 | 3eqtr2i 2758 | . . . . 5 ⊢ ((1 / 2) + (1 / 2)) = ((2 / 3) + (1 / 3)) |
| 28 | 18, 3, 27 | mvrraddi 11438 | . . . 4 ⊢ (((1 / 2) + (1 / 2)) − (1 / 3)) = (2 / 3) |
| 29 | 16, 28 | eqtr3i 2754 | . . 3 ⊢ ((1 / 2) + ((1 / 2) − (1 / 3))) = (2 / 3) |
| 30 | 15, 29 | eqtr3i 2754 | . 2 ⊢ ((1 / 2) + (1 / 6)) = (2 / 3) |
| 31 | 14, 30 | pm3.2i 470 | 1 ⊢ (((1 / 2) − (1 / 6)) = (1 / 3) ∧ ((1 / 2) + (1 / 6)) = (2 / 3)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 1c1 11069 + caddc 11071 − cmin 11405 / cdiv 11835 2c2 12241 3c3 12242 6c6 12245 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 |
| This theorem is referenced by: cos01bnd 16154 1cubrlem 26751 |
| Copyright terms: Public domain | W3C validator |