Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 9t4e36 | Structured version Visualization version GIF version |
Description: 9 times 4 equals 36. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
9t4e36 | ⊢ (9 · 4) = ;36 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9nn0 12162 | . 2 ⊢ 9 ∈ ℕ0 | |
2 | 3nn0 12156 | . 2 ⊢ 3 ∈ ℕ0 | |
3 | df-4 11943 | . 2 ⊢ 4 = (3 + 1) | |
4 | 9t3e27 12464 | . 2 ⊢ (9 · 3) = ;27 | |
5 | 2nn0 12155 | . . 3 ⊢ 2 ∈ ℕ0 | |
6 | 7nn0 12160 | . . 3 ⊢ 7 ∈ ℕ0 | |
7 | eqid 2739 | . . 3 ⊢ ;27 = ;27 | |
8 | 2p1e3 12020 | . . 3 ⊢ (2 + 1) = 3 | |
9 | 6nn0 12159 | . . 3 ⊢ 6 ∈ ℕ0 | |
10 | 1 | nn0cni 12150 | . . . 4 ⊢ 9 ∈ ℂ |
11 | 6 | nn0cni 12150 | . . . 4 ⊢ 7 ∈ ℂ |
12 | 9p7e16 12433 | . . . 4 ⊢ (9 + 7) = ;16 | |
13 | 10, 11, 12 | addcomli 11072 | . . 3 ⊢ (7 + 9) = ;16 |
14 | 5, 6, 1, 7, 8, 9, 13 | decaddci 12402 | . 2 ⊢ (;27 + 9) = ;36 |
15 | 1, 2, 3, 4, 14 | 4t3lem 12438 | 1 ⊢ (9 · 4) = ;36 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 (class class class)co 7252 1c1 10778 · cmul 10782 2c2 11933 3c3 11934 4c4 11935 6c6 11937 7c7 11938 9c9 11940 ;cdc 12341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 ax-resscn 10834 ax-1cn 10835 ax-icn 10836 ax-addcl 10837 ax-addrcl 10838 ax-mulcl 10839 ax-mulrcl 10840 ax-mulcom 10841 ax-addass 10842 ax-mulass 10843 ax-distr 10844 ax-i2m1 10845 ax-1ne0 10846 ax-1rid 10847 ax-rnegex 10848 ax-rrecex 10849 ax-cnre 10850 ax-pre-lttri 10851 ax-pre-lttrn 10852 ax-pre-ltadd 10853 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-pred 6189 df-ord 6251 df-on 6252 df-lim 6253 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-riota 7209 df-ov 7255 df-oprab 7256 df-mpo 7257 df-om 7685 df-wrecs 8089 df-recs 8150 df-rdg 8188 df-er 8433 df-en 8669 df-dom 8670 df-sdom 8671 df-pnf 10917 df-mnf 10918 df-ltxr 10920 df-sub 11112 df-nn 11879 df-2 11941 df-3 11942 df-4 11943 df-5 11944 df-6 11945 df-7 11946 df-8 11947 df-9 11948 df-n0 12139 df-dec 12342 |
This theorem is referenced by: 9t5e45 12466 83prm 16727 1259lem2 16736 1259lem3 16737 1259lem4 16738 1259lem5 16739 2503lem2 16742 4001lem1 16745 4001lem2 16746 log2ub 25979 hgt750lem2 32507 3lexlogpow5ineq1 39969 |
Copyright terms: Public domain | W3C validator |