MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  9p4e13 Structured version   Visualization version   GIF version

Theorem 9p4e13 12269
Description: 9 + 4 = 13. (Contributed by Mario Carneiro, 19-Apr-2015.)
Assertion
Ref Expression
9p4e13 (9 + 4) = 13

Proof of Theorem 9p4e13
StepHypRef Expression
1 9nn0 12001 . 2 9 ∈ ℕ0
2 3nn0 11995 . 2 3 ∈ ℕ0
3 2nn0 11994 . 2 2 ∈ ℕ0
4 df-4 11782 . 2 4 = (3 + 1)
5 df-3 11781 . 2 3 = (2 + 1)
6 9p3e12 12268 . 2 (9 + 3) = 12
71, 2, 3, 4, 5, 66p5lem 12250 1 (9 + 4) = 13
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  (class class class)co 7171  1c1 10617   + caddc 10619  2c2 11772  3c3 11773  4c4 11774  9c9 11779  cdc 12180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7480  ax-resscn 10673  ax-1cn 10674  ax-icn 10675  ax-addcl 10676  ax-addrcl 10677  ax-mulcl 10678  ax-mulrcl 10679  ax-mulcom 10680  ax-addass 10681  ax-mulass 10682  ax-distr 10683  ax-i2m1 10684  ax-1ne0 10685  ax-1rid 10686  ax-rnegex 10687  ax-rrecex 10688  ax-cnre 10689  ax-pre-lttri 10690  ax-pre-lttrn 10691  ax-pre-ltadd 10692
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3683  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-ov 7174  df-om 7601  df-wrecs 7977  df-recs 8038  df-rdg 8076  df-er 8321  df-en 8557  df-dom 8558  df-sdom 8559  df-pnf 10756  df-mnf 10757  df-ltxr 10759  df-nn 11718  df-2 11780  df-3 11781  df-4 11782  df-5 11783  df-6 11784  df-7 11785  df-8 11786  df-9 11787  df-n0 11978  df-dec 12181
This theorem is referenced by:  9p5e14  12270  9t7e63  12307  43prm  16559  83prm  16560  163prm  16562  2503lem2  16575  2503lem3  16576  log2ub  25687  hgt750lem2  32202  139prmALT  44574
  Copyright terms: Public domain W3C validator