Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 9p4e13 | Structured version Visualization version GIF version |
Description: 9 + 4 = 13. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
9p4e13 | ⊢ (9 + 4) = ;13 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9nn0 12001 | . 2 ⊢ 9 ∈ ℕ0 | |
2 | 3nn0 11995 | . 2 ⊢ 3 ∈ ℕ0 | |
3 | 2nn0 11994 | . 2 ⊢ 2 ∈ ℕ0 | |
4 | df-4 11782 | . 2 ⊢ 4 = (3 + 1) | |
5 | df-3 11781 | . 2 ⊢ 3 = (2 + 1) | |
6 | 9p3e12 12268 | . 2 ⊢ (9 + 3) = ;12 | |
7 | 1, 2, 3, 4, 5, 6 | 6p5lem 12250 | 1 ⊢ (9 + 4) = ;13 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 (class class class)co 7171 1c1 10617 + caddc 10619 2c2 11772 3c3 11773 4c4 11774 9c9 11779 ;cdc 12180 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5168 ax-nul 5175 ax-pow 5233 ax-pr 5297 ax-un 7480 ax-resscn 10673 ax-1cn 10674 ax-icn 10675 ax-addcl 10676 ax-addrcl 10677 ax-mulcl 10678 ax-mulrcl 10679 ax-mulcom 10680 ax-addass 10681 ax-mulass 10682 ax-distr 10683 ax-i2m1 10684 ax-1ne0 10685 ax-1rid 10686 ax-rnegex 10687 ax-rrecex 10688 ax-cnre 10689 ax-pre-lttri 10690 ax-pre-lttrn 10691 ax-pre-ltadd 10692 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3683 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-pss 3863 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-tp 4522 df-op 4524 df-uni 4798 df-iun 4884 df-br 5032 df-opab 5094 df-mpt 5112 df-tr 5138 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5484 df-we 5486 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-ov 7174 df-om 7601 df-wrecs 7977 df-recs 8038 df-rdg 8076 df-er 8321 df-en 8557 df-dom 8558 df-sdom 8559 df-pnf 10756 df-mnf 10757 df-ltxr 10759 df-nn 11718 df-2 11780 df-3 11781 df-4 11782 df-5 11783 df-6 11784 df-7 11785 df-8 11786 df-9 11787 df-n0 11978 df-dec 12181 |
This theorem is referenced by: 9p5e14 12270 9t7e63 12307 43prm 16559 83prm 16560 163prm 16562 2503lem2 16575 2503lem3 16576 log2ub 25687 hgt750lem2 32202 139prmALT 44574 |
Copyright terms: Public domain | W3C validator |