| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4pos | Structured version Visualization version GIF version | ||
| Description: The number 4 is positive. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 4pos | ⊢ 0 < 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3re 12273 | . . 3 ⊢ 3 ∈ ℝ | |
| 2 | 1re 11181 | . . 3 ⊢ 1 ∈ ℝ | |
| 3 | 3pos 12298 | . . 3 ⊢ 0 < 3 | |
| 4 | 0lt1 11707 | . . 3 ⊢ 0 < 1 | |
| 5 | 1, 2, 3, 4 | addgt0ii 11727 | . 2 ⊢ 0 < (3 + 1) |
| 6 | df-4 12258 | . 2 ⊢ 4 = (3 + 1) | |
| 7 | 5, 6 | breqtrri 5137 | 1 ⊢ 0 < 4 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5110 (class class class)co 7390 0cc0 11075 1c1 11076 + caddc 11078 < clt 11215 3c3 12249 4c4 12250 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-2 12256 df-3 12257 df-4 12258 |
| This theorem is referenced by: 5pos 12302 div4p1lem1div2 12444 fldiv4p1lem1div2 13804 iexpcyc 14179 discr 14212 faclbnd2 14263 sqrt2gt1lt2 15247 flodddiv4 16392 slotsdifplendx2 17386 pcoass 24931 csbren 25306 minveclem2 25333 dveflem 25890 sincos4thpi 26429 log2cnv 26861 chtublem 27129 bposlem6 27207 gausslemma2dlem0d 27277 2sqlem11 27347 chebbnd1lem3 27389 chebbnd1 27390 pntibndlem1 27507 pntlemb 27515 pntlemg 27516 pntlemr 27520 pntlemf 27523 usgrexmplef 29193 upgr4cycl4dv4e 30121 minvecolem2 30811 minvecolem3 30812 normlem6 31051 sqsscirc1 33905 hgt750lem 34649 iccioo01 37322 lcmineqlem23 42046 3lexlogpow2ineq2 42054 aks4d1p1p7 42069 aks4d1p1p5 42070 4rp 42295 limclner 45656 stoweid 46068 stirlinglem10 46088 stirlinglem12 46090 bgoldbtbndlem3 47812 usgrexmpl1lem 48016 usgrexmpl2lem 48021 usgrexmpl2nb0 48026 usgrexmpl2trifr 48032 gpgprismgr4cycllem6 48094 gpgprismgr4cycllem7 48095 gpgprismgr4cycllem10 48098 pgnbgreunbgrlem2lem3 48110 itsclc0yqsollem2 48756 itscnhlinecirc02plem1 48775 |
| Copyright terms: Public domain | W3C validator |