![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 4pos | Structured version Visualization version GIF version |
Description: The number 4 is positive. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
4pos | ⊢ 0 < 4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3re 12373 | . . 3 ⊢ 3 ∈ ℝ | |
2 | 1re 11290 | . . 3 ⊢ 1 ∈ ℝ | |
3 | 3pos 12398 | . . 3 ⊢ 0 < 3 | |
4 | 0lt1 11812 | . . 3 ⊢ 0 < 1 | |
5 | 1, 2, 3, 4 | addgt0ii 11832 | . 2 ⊢ 0 < (3 + 1) |
6 | df-4 12358 | . 2 ⊢ 4 = (3 + 1) | |
7 | 5, 6 | breqtrri 5193 | 1 ⊢ 0 < 4 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5166 (class class class)co 7448 0cc0 11184 1c1 11185 + caddc 11187 < clt 11324 3c3 12349 4c4 12350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-2 12356 df-3 12357 df-4 12358 |
This theorem is referenced by: 4ne0 12401 5pos 12402 div4p1lem1div2 12548 fldiv4p1lem1div2 13886 iexpcyc 14256 discr 14289 faclbnd2 14340 sqrt2gt1lt2 15323 flodddiv4 16461 slotsdifplendx2 17476 pcoass 25076 csbren 25452 minveclem2 25479 dveflem 26037 sincos4thpi 26573 log2cnv 27005 chtublem 27273 bposlem6 27351 gausslemma2dlem0d 27421 2sqlem11 27491 chebbnd1lem3 27533 chebbnd1 27534 pntibndlem1 27651 pntlemb 27659 pntlemg 27660 pntlemr 27664 pntlemf 27667 usgrexmplef 29294 upgr4cycl4dv4e 30217 minvecolem2 30907 minvecolem3 30908 normlem6 31147 sqsscirc1 33854 hgt750lem 34628 iccioo01 37293 lcmineqlem23 42008 3lexlogpow2ineq2 42016 aks4d1p1p7 42031 aks4d1p1p5 42032 4rp 42287 limclner 45572 stoweid 45984 stirlinglem10 46004 stirlinglem12 46006 bgoldbtbndlem3 47681 usgrexmpl1lem 47836 usgrexmpl2lem 47841 usgrexmpl2nb0 47846 usgrexmpl2trifr 47852 itsclc0yqsollem2 48497 itscnhlinecirc02plem1 48516 |
Copyright terms: Public domain | W3C validator |