![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 4pos | Structured version Visualization version GIF version |
Description: The number 4 is positive. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
4pos | ⊢ 0 < 4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3re 11392 | . . 3 ⊢ 3 ∈ ℝ | |
2 | 1re 10329 | . . 3 ⊢ 1 ∈ ℝ | |
3 | 3pos 11424 | . . 3 ⊢ 0 < 3 | |
4 | 0lt1 10843 | . . 3 ⊢ 0 < 1 | |
5 | 1, 2, 3, 4 | addgt0ii 10863 | . 2 ⊢ 0 < (3 + 1) |
6 | df-4 11377 | . 2 ⊢ 4 = (3 + 1) | |
7 | 5, 6 | breqtrri 4871 | 1 ⊢ 0 < 4 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 4844 (class class class)co 6879 0cc0 10225 1c1 10226 + caddc 10228 < clt 10364 3c3 11368 4c4 11369 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 ax-resscn 10282 ax-1cn 10283 ax-icn 10284 ax-addcl 10285 ax-addrcl 10286 ax-mulcl 10287 ax-mulrcl 10288 ax-mulcom 10289 ax-addass 10290 ax-mulass 10291 ax-distr 10292 ax-i2m1 10293 ax-1ne0 10294 ax-1rid 10295 ax-rnegex 10296 ax-rrecex 10297 ax-cnre 10298 ax-pre-lttri 10299 ax-pre-lttrn 10300 ax-pre-ltadd 10301 ax-pre-mulgt0 10302 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-br 4845 df-opab 4907 df-mpt 4924 df-id 5221 df-po 5234 df-so 5235 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-riota 6840 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-er 7983 df-en 8197 df-dom 8198 df-sdom 8199 df-pnf 10366 df-mnf 10367 df-xr 10368 df-ltxr 10369 df-le 10370 df-sub 10559 df-neg 10560 df-2 11375 df-3 11376 df-4 11377 |
This theorem is referenced by: 4ne0 11427 5pos 11428 div4p1lem1div2 11574 fldiv4p1lem1div2 12890 iexpcyc 13222 discr 13254 faclbnd2 13330 sqrt2gt1lt2 14355 flodddiv4 15471 pcoass 23150 csbren 23520 minveclem2 23535 dveflem 24082 sincos4thpi 24606 log2cnv 25022 chtublem 25287 bposlem6 25365 gausslemma2dlem0d 25435 2sqlem11 25505 chebbnd1lem3 25511 chebbnd1 25512 pntibndlem1 25629 pntlemb 25637 pntlemg 25638 pntlemr 25642 pntlemf 25645 usgrexmplef 26492 upgr4cycl4dv4e 27528 minvecolem2 28255 minvecolem3 28256 normlem6 28496 sqsscirc1 30469 hgt750lem 31248 limclner 40622 stoweid 41018 stirlinglem10 41038 stirlinglem12 41040 bgoldbtbndlem3 42472 |
Copyright terms: Public domain | W3C validator |