| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4pos | Structured version Visualization version GIF version | ||
| Description: The number 4 is positive. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 4pos | ⊢ 0 < 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3re 12320 | . . 3 ⊢ 3 ∈ ℝ | |
| 2 | 1re 11235 | . . 3 ⊢ 1 ∈ ℝ | |
| 3 | 3pos 12345 | . . 3 ⊢ 0 < 3 | |
| 4 | 0lt1 11759 | . . 3 ⊢ 0 < 1 | |
| 5 | 1, 2, 3, 4 | addgt0ii 11779 | . 2 ⊢ 0 < (3 + 1) |
| 6 | df-4 12305 | . 2 ⊢ 4 = (3 + 1) | |
| 7 | 5, 6 | breqtrri 5146 | 1 ⊢ 0 < 4 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5119 (class class class)co 7405 0cc0 11129 1c1 11130 + caddc 11132 < clt 11269 3c3 12296 4c4 12297 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-2 12303 df-3 12304 df-4 12305 |
| This theorem is referenced by: 5pos 12349 div4p1lem1div2 12496 fldiv4p1lem1div2 13852 iexpcyc 14225 discr 14258 faclbnd2 14309 sqrt2gt1lt2 15293 flodddiv4 16434 slotsdifplendx2 17430 pcoass 24975 csbren 25351 minveclem2 25378 dveflem 25935 sincos4thpi 26474 log2cnv 26906 chtublem 27174 bposlem6 27252 gausslemma2dlem0d 27322 2sqlem11 27392 chebbnd1lem3 27434 chebbnd1 27435 pntibndlem1 27552 pntlemb 27560 pntlemg 27561 pntlemr 27565 pntlemf 27568 usgrexmplef 29238 upgr4cycl4dv4e 30166 minvecolem2 30856 minvecolem3 30857 normlem6 31096 sqsscirc1 33939 hgt750lem 34683 iccioo01 37345 lcmineqlem23 42064 3lexlogpow2ineq2 42072 aks4d1p1p7 42087 aks4d1p1p5 42088 4rp 42349 limclner 45680 stoweid 46092 stirlinglem10 46112 stirlinglem12 46114 bgoldbtbndlem3 47821 usgrexmpl1lem 48025 usgrexmpl2lem 48030 usgrexmpl2nb0 48035 usgrexmpl2trifr 48041 gpgprismgr4cycllem6 48099 gpgprismgr4cycllem7 48100 gpgprismgr4cycllem10 48103 itsclc0yqsollem2 48743 itscnhlinecirc02plem1 48762 |
| Copyright terms: Public domain | W3C validator |