| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4pos | Structured version Visualization version GIF version | ||
| Description: The number 4 is positive. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 4pos | ⊢ 0 < 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3re 12205 | . . 3 ⊢ 3 ∈ ℝ | |
| 2 | 1re 11112 | . . 3 ⊢ 1 ∈ ℝ | |
| 3 | 3pos 12230 | . . 3 ⊢ 0 < 3 | |
| 4 | 0lt1 11639 | . . 3 ⊢ 0 < 1 | |
| 5 | 1, 2, 3, 4 | addgt0ii 11659 | . 2 ⊢ 0 < (3 + 1) |
| 6 | df-4 12190 | . 2 ⊢ 4 = (3 + 1) | |
| 7 | 5, 6 | breqtrri 5118 | 1 ⊢ 0 < 4 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5091 (class class class)co 7346 0cc0 11006 1c1 11007 + caddc 11009 < clt 11146 3c3 12181 4c4 12182 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-2 12188 df-3 12189 df-4 12190 |
| This theorem is referenced by: 5pos 12234 div4p1lem1div2 12376 fldiv4p1lem1div2 13739 iexpcyc 14114 discr 14147 faclbnd2 14198 sqrt2gt1lt2 15181 flodddiv4 16326 slotsdifplendx2 17320 pcoass 24952 csbren 25327 minveclem2 25354 dveflem 25911 sincos4thpi 26450 log2cnv 26882 chtublem 27150 bposlem6 27228 gausslemma2dlem0d 27298 2sqlem11 27368 chebbnd1lem3 27410 chebbnd1 27411 pntibndlem1 27528 pntlemb 27536 pntlemg 27537 pntlemr 27541 pntlemf 27544 usgrexmplef 29238 upgr4cycl4dv4e 30163 minvecolem2 30853 minvecolem3 30854 normlem6 31093 sqsscirc1 33919 hgt750lem 34662 iccioo01 37367 lcmineqlem23 42090 3lexlogpow2ineq2 42098 aks4d1p1p7 42113 aks4d1p1p5 42114 4rp 42339 limclner 45695 stoweid 46107 stirlinglem10 46127 stirlinglem12 46129 bgoldbtbndlem3 47844 usgrexmpl1lem 48058 usgrexmpl2lem 48063 usgrexmpl2nb0 48068 usgrexmpl2trifr 48074 gpgprismgr4cycllem6 48137 gpgprismgr4cycllem7 48138 gpgprismgr4cycllem10 48141 pgnbgreunbgrlem2lem3 48153 itsclc0yqsollem2 48801 itscnhlinecirc02plem1 48820 |
| Copyright terms: Public domain | W3C validator |