| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4pos | Structured version Visualization version GIF version | ||
| Description: The number 4 is positive. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 4pos | ⊢ 0 < 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3re 12226 | . . 3 ⊢ 3 ∈ ℝ | |
| 2 | 1re 11134 | . . 3 ⊢ 1 ∈ ℝ | |
| 3 | 3pos 12251 | . . 3 ⊢ 0 < 3 | |
| 4 | 0lt1 11660 | . . 3 ⊢ 0 < 1 | |
| 5 | 1, 2, 3, 4 | addgt0ii 11680 | . 2 ⊢ 0 < (3 + 1) |
| 6 | df-4 12211 | . 2 ⊢ 4 = (3 + 1) | |
| 7 | 5, 6 | breqtrri 5122 | 1 ⊢ 0 < 4 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5095 (class class class)co 7353 0cc0 11028 1c1 11029 + caddc 11031 < clt 11168 3c3 12202 4c4 12203 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-2 12209 df-3 12210 df-4 12211 |
| This theorem is referenced by: 5pos 12255 div4p1lem1div2 12397 fldiv4p1lem1div2 13757 iexpcyc 14132 discr 14165 faclbnd2 14216 sqrt2gt1lt2 15199 flodddiv4 16344 slotsdifplendx2 17338 pcoass 24940 csbren 25315 minveclem2 25342 dveflem 25899 sincos4thpi 26438 log2cnv 26870 chtublem 27138 bposlem6 27216 gausslemma2dlem0d 27286 2sqlem11 27356 chebbnd1lem3 27398 chebbnd1 27399 pntibndlem1 27516 pntlemb 27524 pntlemg 27525 pntlemr 27529 pntlemf 27532 usgrexmplef 29222 upgr4cycl4dv4e 30147 minvecolem2 30837 minvecolem3 30838 normlem6 31077 sqsscirc1 33877 hgt750lem 34621 iccioo01 37303 lcmineqlem23 42027 3lexlogpow2ineq2 42035 aks4d1p1p7 42050 aks4d1p1p5 42051 4rp 42276 limclner 45636 stoweid 46048 stirlinglem10 46068 stirlinglem12 46070 bgoldbtbndlem3 47795 usgrexmpl1lem 48009 usgrexmpl2lem 48014 usgrexmpl2nb0 48019 usgrexmpl2trifr 48025 gpgprismgr4cycllem6 48088 gpgprismgr4cycllem7 48089 gpgprismgr4cycllem10 48092 pgnbgreunbgrlem2lem3 48104 itsclc0yqsollem2 48752 itscnhlinecirc02plem1 48771 |
| Copyright terms: Public domain | W3C validator |