Colors of
variables: wff
setvar class |
Syntax hints: class class
class wbr 5109 (class class class)co 7361
0cc0 11059 1c1 11060
+ caddc 11062 <
clt 11197 3c3 12217
4c4 12218 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 ax-resscn 11116 ax-1cn 11117 ax-icn 11118 ax-addcl 11119 ax-addrcl 11120 ax-mulcl 11121 ax-mulrcl 11122 ax-mulcom 11123 ax-addass 11124 ax-mulass 11125 ax-distr 11126 ax-i2m1 11127 ax-1ne0 11128 ax-1rid 11129 ax-rnegex 11130 ax-rrecex 11131 ax-cnre 11132 ax-pre-lttri 11133 ax-pre-lttrn 11134 ax-pre-ltadd 11135 ax-pre-mulgt0 11136 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-br 5110 df-opab 5172 df-mpt 5193 df-id 5535 df-po 5549 df-so 5550 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7317 df-ov 7364 df-oprab 7365 df-mpo 7366 df-er 8654 df-en 8890 df-dom 8891 df-sdom 8892 df-pnf 11199 df-mnf 11200 df-xr 11201 df-ltxr 11202 df-le 11203 df-sub 11395 df-neg 11396 df-2 12224
df-3 12225 df-4 12226 |
This theorem is referenced by: 4ne0
12269 5pos
12270 div4p1lem1div2
12416 fldiv4p1lem1div2
13749 iexpcyc
14120 discr
14152 faclbnd2
14200 sqrt2gt1lt2
15168 flodddiv4
16303 slotsdifplendx2
17306 pcoass
24410 csbren
24786 minveclem2
24813 dveflem
25366 sincos4thpi
25893 log2cnv
26317 chtublem
26582 bposlem6
26660 gausslemma2dlem0d
26730 2sqlem11
26800 chebbnd1lem3
26842 chebbnd1
26843 pntibndlem1
26960 pntlemb
26968 pntlemg
26969 pntlemr
26973 pntlemf
26976 usgrexmplef
28256 upgr4cycl4dv4e
29178 minvecolem2
29866 minvecolem3
29867 normlem6
30106 sqsscirc1
32553 hgt750lem
33328 iccioo01
35848 lcmineqlem23
40558 3lexlogpow2ineq2
40566 aks4d1p1p7
40581 aks4d1p1p5
40582 limclner
43982 stoweid
44394 stirlinglem10
44414 stirlinglem12
44416 bgoldbtbndlem3
46089 itsclc0yqsollem2
46939 itscnhlinecirc02plem1
46958 |