Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 4pos | Structured version Visualization version GIF version |
Description: The number 4 is positive. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
4pos | ⊢ 0 < 4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3re 11983 | . . 3 ⊢ 3 ∈ ℝ | |
2 | 1re 10906 | . . 3 ⊢ 1 ∈ ℝ | |
3 | 3pos 12008 | . . 3 ⊢ 0 < 3 | |
4 | 0lt1 11427 | . . 3 ⊢ 0 < 1 | |
5 | 1, 2, 3, 4 | addgt0ii 11447 | . 2 ⊢ 0 < (3 + 1) |
6 | df-4 11968 | . 2 ⊢ 4 = (3 + 1) | |
7 | 5, 6 | breqtrri 5097 | 1 ⊢ 0 < 4 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5070 (class class class)co 7255 0cc0 10802 1c1 10803 + caddc 10805 < clt 10940 3c3 11959 4c4 11960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-2 11966 df-3 11967 df-4 11968 |
This theorem is referenced by: 4ne0 12011 5pos 12012 div4p1lem1div2 12158 fldiv4p1lem1div2 13483 iexpcyc 13851 discr 13883 faclbnd2 13933 sqrt2gt1lt2 14914 flodddiv4 16050 pcoass 24093 csbren 24468 minveclem2 24495 dveflem 25048 sincos4thpi 25575 log2cnv 25999 chtublem 26264 bposlem6 26342 gausslemma2dlem0d 26412 2sqlem11 26482 chebbnd1lem3 26524 chebbnd1 26525 pntibndlem1 26642 pntlemb 26650 pntlemg 26651 pntlemr 26655 pntlemf 26658 usgrexmplef 27529 upgr4cycl4dv4e 28450 minvecolem2 29138 minvecolem3 29139 normlem6 29378 sqsscirc1 31760 hgt750lem 32531 iccioo01 35425 lcmineqlem23 39987 3lexlogpow2ineq2 39995 aks4d1p1p7 40010 aks4d1p1p5 40011 limclner 43082 stoweid 43494 stirlinglem10 43514 stirlinglem12 43516 bgoldbtbndlem3 45147 itsclc0yqsollem2 45997 itscnhlinecirc02plem1 46016 |
Copyright terms: Public domain | W3C validator |