Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 4pos | Structured version Visualization version GIF version |
Description: The number 4 is positive. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
4pos | ⊢ 0 < 4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3re 12064 | . . 3 ⊢ 3 ∈ ℝ | |
2 | 1re 10986 | . . 3 ⊢ 1 ∈ ℝ | |
3 | 3pos 12089 | . . 3 ⊢ 0 < 3 | |
4 | 0lt1 11508 | . . 3 ⊢ 0 < 1 | |
5 | 1, 2, 3, 4 | addgt0ii 11528 | . 2 ⊢ 0 < (3 + 1) |
6 | df-4 12049 | . 2 ⊢ 4 = (3 + 1) | |
7 | 5, 6 | breqtrri 5106 | 1 ⊢ 0 < 4 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5079 (class class class)co 7272 0cc0 10882 1c1 10883 + caddc 10885 < clt 11020 3c3 12040 4c4 12041 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7583 ax-resscn 10939 ax-1cn 10940 ax-icn 10941 ax-addcl 10942 ax-addrcl 10943 ax-mulcl 10944 ax-mulrcl 10945 ax-mulcom 10946 ax-addass 10947 ax-mulass 10948 ax-distr 10949 ax-i2m1 10950 ax-1ne0 10951 ax-1rid 10952 ax-rnegex 10953 ax-rrecex 10954 ax-cnre 10955 ax-pre-lttri 10956 ax-pre-lttrn 10957 ax-pre-ltadd 10958 ax-pre-mulgt0 10959 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-po 5504 df-so 5505 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7229 df-ov 7275 df-oprab 7276 df-mpo 7277 df-er 8490 df-en 8726 df-dom 8727 df-sdom 8728 df-pnf 11022 df-mnf 11023 df-xr 11024 df-ltxr 11025 df-le 11026 df-sub 11218 df-neg 11219 df-2 12047 df-3 12048 df-4 12049 |
This theorem is referenced by: 4ne0 12092 5pos 12093 div4p1lem1div2 12239 fldiv4p1lem1div2 13566 iexpcyc 13934 discr 13966 faclbnd2 14016 sqrt2gt1lt2 14997 flodddiv4 16133 slotsdifplendx2 17138 pcoass 24198 csbren 24574 minveclem2 24601 dveflem 25154 sincos4thpi 25681 log2cnv 26105 chtublem 26370 bposlem6 26448 gausslemma2dlem0d 26518 2sqlem11 26588 chebbnd1lem3 26630 chebbnd1 26631 pntibndlem1 26748 pntlemb 26756 pntlemg 26757 pntlemr 26761 pntlemf 26764 usgrexmplef 27637 upgr4cycl4dv4e 28558 minvecolem2 29246 minvecolem3 29247 normlem6 29486 sqsscirc1 31867 hgt750lem 32640 iccioo01 35507 lcmineqlem23 40068 3lexlogpow2ineq2 40076 aks4d1p1p7 40091 aks4d1p1p5 40092 limclner 43174 stoweid 43586 stirlinglem10 43606 stirlinglem12 43608 bgoldbtbndlem3 45238 itsclc0yqsollem2 46088 itscnhlinecirc02plem1 46107 |
Copyright terms: Public domain | W3C validator |