Colors of
variables: wff
setvar class |
Syntax hints: class class
class wbr 5143 (class class class)co 7415
0cc0 11133 1c1 11134
+ caddc 11136 <
clt 11273 3c3 12293
4c4 12294 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906
ax-6 1964 ax-7 2004 ax-8 2101
ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions:
df-bi 206 df-an 396
df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-po 5585 df-so 5586 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-er 8719 df-en 8959 df-dom 8960 df-sdom 8961 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-2 12300
df-3 12301 df-4 12302 |
This theorem is referenced by: 4ne0
12345 5pos
12346 div4p1lem1div2
12492 fldiv4p1lem1div2
13827 iexpcyc
14197 discr
14229 faclbnd2
14277 sqrt2gt1lt2
15248 flodddiv4
16384 slotsdifplendx2
17392 pcoass
24945 csbren
25321 minveclem2
25348 dveflem
25905 sincos4thpi
26442 log2cnv
26870 chtublem
27138 bposlem6
27216 gausslemma2dlem0d
27286 2sqlem11
27356 chebbnd1lem3
27398 chebbnd1
27399 pntibndlem1
27516 pntlemb
27524 pntlemg
27525 pntlemr
27529 pntlemf
27532 usgrexmplef
29066 upgr4cycl4dv4e
29989 minvecolem2
30679 minvecolem3
30680 normlem6
30919 sqsscirc1
33504 hgt750lem
34278 iccioo01
36801 lcmineqlem23
41517 3lexlogpow2ineq2
41525 aks4d1p1p7
41540 aks4d1p1p5
41541 limclner
45030 stoweid
45442 stirlinglem10
45462 stirlinglem12
45464 bgoldbtbndlem3
47138 itsclc0yqsollem2
47827 itscnhlinecirc02plem1
47846 |