Colors of
variables: wff
setvar class |
Syntax hints: class class
class wbr 5148 (class class class)co 7408
0cc0 11109 1c1 11110
+ caddc 11112 <
clt 11247 3c3 12267
4c4 12268 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913
ax-6 1971 ax-7 2011 ax-8 2108
ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions:
df-bi 206 df-an 397
df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-2 12274
df-3 12275 df-4 12276 |
This theorem is referenced by: 4ne0
12319 5pos
12320 div4p1lem1div2
12466 fldiv4p1lem1div2
13799 iexpcyc
14170 discr
14202 faclbnd2
14250 sqrt2gt1lt2
15220 flodddiv4
16355 slotsdifplendx2
17361 pcoass
24539 csbren
24915 minveclem2
24942 dveflem
25495 sincos4thpi
26022 log2cnv
26446 chtublem
26711 bposlem6
26789 gausslemma2dlem0d
26859 2sqlem11
26929 chebbnd1lem3
26971 chebbnd1
26972 pntibndlem1
27089 pntlemb
27097 pntlemg
27098 pntlemr
27102 pntlemf
27105 usgrexmplef
28513 upgr4cycl4dv4e
29435 minvecolem2
30123 minvecolem3
30124 normlem6
30363 sqsscirc1
32883 hgt750lem
33658 iccioo01
36203 lcmineqlem23
40911 3lexlogpow2ineq2
40919 aks4d1p1p7
40934 aks4d1p1p5
40935 limclner
44357 stoweid
44769 stirlinglem10
44789 stirlinglem12
44791 bgoldbtbndlem3
46465 itsclc0yqsollem2
47439 itscnhlinecirc02plem1
47458 |