| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4pos | Structured version Visualization version GIF version | ||
| Description: The number 4 is positive. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 4pos | ⊢ 0 < 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3re 12214 | . . 3 ⊢ 3 ∈ ℝ | |
| 2 | 1re 11121 | . . 3 ⊢ 1 ∈ ℝ | |
| 3 | 3pos 12239 | . . 3 ⊢ 0 < 3 | |
| 4 | 0lt1 11648 | . . 3 ⊢ 0 < 1 | |
| 5 | 1, 2, 3, 4 | addgt0ii 11668 | . 2 ⊢ 0 < (3 + 1) |
| 6 | df-4 12199 | . 2 ⊢ 4 = (3 + 1) | |
| 7 | 5, 6 | breqtrri 5122 | 1 ⊢ 0 < 4 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5095 (class class class)co 7354 0cc0 11015 1c1 11016 + caddc 11018 < clt 11155 3c3 12190 4c4 12191 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-2 12197 df-3 12198 df-4 12199 |
| This theorem is referenced by: 5pos 12243 div4p1lem1div2 12385 fldiv4p1lem1div2 13743 iexpcyc 14118 discr 14151 faclbnd2 14202 sqrt2gt1lt2 15185 flodddiv4 16330 slotsdifplendx2 17324 pcoass 24954 csbren 25329 minveclem2 25356 dveflem 25913 sincos4thpi 26452 log2cnv 26884 chtublem 27152 bposlem6 27230 gausslemma2dlem0d 27300 2sqlem11 27370 chebbnd1lem3 27412 chebbnd1 27413 pntibndlem1 27530 pntlemb 27538 pntlemg 27539 pntlemr 27543 pntlemf 27546 usgrexmplef 29241 upgr4cycl4dv4e 30169 minvecolem2 30859 minvecolem3 30860 normlem6 31099 sqsscirc1 33944 hgt750lem 34687 iccioo01 37394 lcmineqlem23 42167 3lexlogpow2ineq2 42175 aks4d1p1p7 42190 aks4d1p1p5 42191 4rp 42421 limclner 45776 stoweid 46188 stirlinglem10 46208 stirlinglem12 46210 bgoldbtbndlem3 47934 usgrexmpl1lem 48148 usgrexmpl2lem 48153 usgrexmpl2nb0 48158 usgrexmpl2trifr 48164 gpgprismgr4cycllem6 48227 gpgprismgr4cycllem7 48228 gpgprismgr4cycllem10 48231 pgnbgreunbgrlem2lem3 48243 itsclc0yqsollem2 48891 itscnhlinecirc02plem1 48910 |
| Copyright terms: Public domain | W3C validator |