Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 4pos | Structured version Visualization version GIF version |
Description: The number 4 is positive. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
4pos | ⊢ 0 < 4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3re 12053 | . . 3 ⊢ 3 ∈ ℝ | |
2 | 1re 10975 | . . 3 ⊢ 1 ∈ ℝ | |
3 | 3pos 12078 | . . 3 ⊢ 0 < 3 | |
4 | 0lt1 11497 | . . 3 ⊢ 0 < 1 | |
5 | 1, 2, 3, 4 | addgt0ii 11517 | . 2 ⊢ 0 < (3 + 1) |
6 | df-4 12038 | . 2 ⊢ 4 = (3 + 1) | |
7 | 5, 6 | breqtrri 5101 | 1 ⊢ 0 < 4 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5074 (class class class)co 7275 0cc0 10871 1c1 10872 + caddc 10874 < clt 11009 3c3 12029 4c4 12030 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-2 12036 df-3 12037 df-4 12038 |
This theorem is referenced by: 4ne0 12081 5pos 12082 div4p1lem1div2 12228 fldiv4p1lem1div2 13555 iexpcyc 13923 discr 13955 faclbnd2 14005 sqrt2gt1lt2 14986 flodddiv4 16122 slotsdifplendx2 17127 pcoass 24187 csbren 24563 minveclem2 24590 dveflem 25143 sincos4thpi 25670 log2cnv 26094 chtublem 26359 bposlem6 26437 gausslemma2dlem0d 26507 2sqlem11 26577 chebbnd1lem3 26619 chebbnd1 26620 pntibndlem1 26737 pntlemb 26745 pntlemg 26746 pntlemr 26750 pntlemf 26753 usgrexmplef 27626 upgr4cycl4dv4e 28549 minvecolem2 29237 minvecolem3 29238 normlem6 29477 sqsscirc1 31858 hgt750lem 32631 iccioo01 35498 lcmineqlem23 40059 3lexlogpow2ineq2 40067 aks4d1p1p7 40082 aks4d1p1p5 40083 limclner 43192 stoweid 43604 stirlinglem10 43624 stirlinglem12 43626 bgoldbtbndlem3 45259 itsclc0yqsollem2 46109 itscnhlinecirc02plem1 46128 |
Copyright terms: Public domain | W3C validator |