| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4pos | Structured version Visualization version GIF version | ||
| Description: The number 4 is positive. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 4pos | ⊢ 0 < 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3re 12266 | . . 3 ⊢ 3 ∈ ℝ | |
| 2 | 1re 11174 | . . 3 ⊢ 1 ∈ ℝ | |
| 3 | 3pos 12291 | . . 3 ⊢ 0 < 3 | |
| 4 | 0lt1 11700 | . . 3 ⊢ 0 < 1 | |
| 5 | 1, 2, 3, 4 | addgt0ii 11720 | . 2 ⊢ 0 < (3 + 1) |
| 6 | df-4 12251 | . 2 ⊢ 4 = (3 + 1) | |
| 7 | 5, 6 | breqtrri 5134 | 1 ⊢ 0 < 4 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5107 (class class class)co 7387 0cc0 11068 1c1 11069 + caddc 11071 < clt 11208 3c3 12242 4c4 12243 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-2 12249 df-3 12250 df-4 12251 |
| This theorem is referenced by: 5pos 12295 div4p1lem1div2 12437 fldiv4p1lem1div2 13797 iexpcyc 14172 discr 14205 faclbnd2 14256 sqrt2gt1lt2 15240 flodddiv4 16385 slotsdifplendx2 17379 pcoass 24924 csbren 25299 minveclem2 25326 dveflem 25883 sincos4thpi 26422 log2cnv 26854 chtublem 27122 bposlem6 27200 gausslemma2dlem0d 27270 2sqlem11 27340 chebbnd1lem3 27382 chebbnd1 27383 pntibndlem1 27500 pntlemb 27508 pntlemg 27509 pntlemr 27513 pntlemf 27516 usgrexmplef 29186 upgr4cycl4dv4e 30114 minvecolem2 30804 minvecolem3 30805 normlem6 31044 sqsscirc1 33898 hgt750lem 34642 iccioo01 37315 lcmineqlem23 42039 3lexlogpow2ineq2 42047 aks4d1p1p7 42062 aks4d1p1p5 42063 4rp 42288 limclner 45649 stoweid 46061 stirlinglem10 46081 stirlinglem12 46083 bgoldbtbndlem3 47808 usgrexmpl1lem 48012 usgrexmpl2lem 48017 usgrexmpl2nb0 48022 usgrexmpl2trifr 48028 gpgprismgr4cycllem6 48090 gpgprismgr4cycllem7 48091 gpgprismgr4cycllem10 48094 pgnbgreunbgrlem2lem3 48106 itsclc0yqsollem2 48752 itscnhlinecirc02plem1 48771 |
| Copyright terms: Public domain | W3C validator |