MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ef4p Structured version   Visualization version   GIF version

Theorem ef4p 15127
Description: Separate out the first four terms of the infinite series expansion of the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 29-Apr-2014.)
Hypothesis
Ref Expression
ef4p.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
Assertion
Ref Expression
ef4p (𝐴 ∈ ℂ → (exp‘𝐴) = ((((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6)) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)))
Distinct variable groups:   𝑘,𝑛,𝐴   𝑘,𝐹
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem ef4p
StepHypRef Expression
1 ef4p.1 . 2 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
2 df-4 11337 . 2 4 = (3 + 1)
3 3nn0 11558 . 2 3 ∈ ℕ0
4 id 22 . 2 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
5 ax-1cn 10247 . . . 4 1 ∈ ℂ
6 addcl 10271 . . . 4 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 + 𝐴) ∈ ℂ)
75, 6mpan 681 . . 3 (𝐴 ∈ ℂ → (1 + 𝐴) ∈ ℂ)
8 sqcl 13132 . . . 4 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
98halfcld 11523 . . 3 (𝐴 ∈ ℂ → ((𝐴↑2) / 2) ∈ ℂ)
107, 9addcld 10313 . 2 (𝐴 ∈ ℂ → ((1 + 𝐴) + ((𝐴↑2) / 2)) ∈ ℂ)
11 df-3 11336 . . 3 3 = (2 + 1)
12 2nn0 11557 . . 3 2 ∈ ℕ0
13 df-2 11335 . . . 4 2 = (1 + 1)
14 1nn0 11556 . . . 4 1 ∈ ℕ0
155a1i 11 . . . 4 (𝐴 ∈ ℂ → 1 ∈ ℂ)
16 1e0p1 11783 . . . . 5 1 = (0 + 1)
17 0nn0 11555 . . . . 5 0 ∈ ℕ0
18 0cnd 10286 . . . . 5 (𝐴 ∈ ℂ → 0 ∈ ℂ)
191efval2 15098 . . . . . . . 8 (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 (𝐹𝑘))
20 nn0uz 11922 . . . . . . . . 9 0 = (ℤ‘0)
2120sumeq1i 14715 . . . . . . . 8 Σ𝑘 ∈ ℕ0 (𝐹𝑘) = Σ𝑘 ∈ (ℤ‘0)(𝐹𝑘)
2219, 21syl6req 2816 . . . . . . 7 (𝐴 ∈ ℂ → Σ𝑘 ∈ (ℤ‘0)(𝐹𝑘) = (exp‘𝐴))
2322oveq2d 6858 . . . . . 6 (𝐴 ∈ ℂ → (0 + Σ𝑘 ∈ (ℤ‘0)(𝐹𝑘)) = (0 + (exp‘𝐴)))
24 efcl 15097 . . . . . . 7 (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ)
2524addid2d 10491 . . . . . 6 (𝐴 ∈ ℂ → (0 + (exp‘𝐴)) = (exp‘𝐴))
2623, 25eqtr2d 2800 . . . . 5 (𝐴 ∈ ℂ → (exp‘𝐴) = (0 + Σ𝑘 ∈ (ℤ‘0)(𝐹𝑘)))
27 eft0val 15126 . . . . . . 7 (𝐴 ∈ ℂ → ((𝐴↑0) / (!‘0)) = 1)
2827oveq2d 6858 . . . . . 6 (𝐴 ∈ ℂ → (0 + ((𝐴↑0) / (!‘0))) = (0 + 1))
29 0p1e1 11401 . . . . . 6 (0 + 1) = 1
3028, 29syl6eq 2815 . . . . 5 (𝐴 ∈ ℂ → (0 + ((𝐴↑0) / (!‘0))) = 1)
311, 16, 17, 4, 18, 26, 30efsep 15124 . . . 4 (𝐴 ∈ ℂ → (exp‘𝐴) = (1 + Σ𝑘 ∈ (ℤ‘1)(𝐹𝑘)))
32 exp1 13073 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
33 fac1 13268 . . . . . . . 8 (!‘1) = 1
3433a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → (!‘1) = 1)
3532, 34oveq12d 6860 . . . . . 6 (𝐴 ∈ ℂ → ((𝐴↑1) / (!‘1)) = (𝐴 / 1))
36 div1 10970 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴)
3735, 36eqtrd 2799 . . . . 5 (𝐴 ∈ ℂ → ((𝐴↑1) / (!‘1)) = 𝐴)
3837oveq2d 6858 . . . 4 (𝐴 ∈ ℂ → (1 + ((𝐴↑1) / (!‘1))) = (1 + 𝐴))
391, 13, 14, 4, 15, 31, 38efsep 15124 . . 3 (𝐴 ∈ ℂ → (exp‘𝐴) = ((1 + 𝐴) + Σ𝑘 ∈ (ℤ‘2)(𝐹𝑘)))
40 fac2 13270 . . . . . 6 (!‘2) = 2
4140oveq2i 6853 . . . . 5 ((𝐴↑2) / (!‘2)) = ((𝐴↑2) / 2)
4241oveq2i 6853 . . . 4 ((1 + 𝐴) + ((𝐴↑2) / (!‘2))) = ((1 + 𝐴) + ((𝐴↑2) / 2))
4342a1i 11 . . 3 (𝐴 ∈ ℂ → ((1 + 𝐴) + ((𝐴↑2) / (!‘2))) = ((1 + 𝐴) + ((𝐴↑2) / 2)))
441, 11, 12, 4, 7, 39, 43efsep 15124 . 2 (𝐴 ∈ ℂ → (exp‘𝐴) = (((1 + 𝐴) + ((𝐴↑2) / 2)) + Σ𝑘 ∈ (ℤ‘3)(𝐹𝑘)))
45 fac3 13271 . . . . 5 (!‘3) = 6
4645oveq2i 6853 . . . 4 ((𝐴↑3) / (!‘3)) = ((𝐴↑3) / 6)
4746oveq2i 6853 . . 3 (((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / (!‘3))) = (((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6))
4847a1i 11 . 2 (𝐴 ∈ ℂ → (((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / (!‘3))) = (((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6)))
491, 2, 3, 4, 10, 44, 48efsep 15124 1 (𝐴 ∈ ℂ → (exp‘𝐴) = ((((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6)) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1652  wcel 2155  cmpt 4888  cfv 6068  (class class class)co 6842  cc 10187  0cc0 10189  1c1 10190   + caddc 10192   / cdiv 10938  2c2 11327  3c3 11328  4c4 11329  6c6 11331  0cn0 11538  cuz 11886  cexp 13067  !cfa 13264  Σcsu 14703  expce 15076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267  ax-addf 10268  ax-mulf 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-pm 8063  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-n0 11539  df-z 11625  df-uz 11887  df-rp 12029  df-ico 12383  df-fz 12534  df-fzo 12674  df-fl 12801  df-seq 13009  df-exp 13068  df-fac 13265  df-hash 13322  df-shft 14094  df-cj 14126  df-re 14127  df-im 14128  df-sqrt 14262  df-abs 14263  df-limsup 14489  df-clim 14506  df-rlim 14507  df-sum 14704  df-ef 15082
This theorem is referenced by:  efi4p  15151
  Copyright terms: Public domain W3C validator