| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ef4p | Structured version Visualization version GIF version | ||
| Description: Separate out the first four terms of the infinite series expansion of the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 29-Apr-2014.) |
| Ref | Expression |
|---|---|
| ef4p.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) |
| Ref | Expression |
|---|---|
| ef4p | ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = ((((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6)) + Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ef4p.1 | . 2 ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) | |
| 2 | df-4 12211 | . 2 ⊢ 4 = (3 + 1) | |
| 3 | 3nn0 12420 | . 2 ⊢ 3 ∈ ℕ0 | |
| 4 | id 22 | . 2 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
| 5 | ax-1cn 11086 | . . . 4 ⊢ 1 ∈ ℂ | |
| 6 | addcl 11110 | . . . 4 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 + 𝐴) ∈ ℂ) | |
| 7 | 5, 6 | mpan 690 | . . 3 ⊢ (𝐴 ∈ ℂ → (1 + 𝐴) ∈ ℂ) |
| 8 | sqcl 14043 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ) | |
| 9 | 8 | halfcld 12387 | . . 3 ⊢ (𝐴 ∈ ℂ → ((𝐴↑2) / 2) ∈ ℂ) |
| 10 | 7, 9 | addcld 11153 | . 2 ⊢ (𝐴 ∈ ℂ → ((1 + 𝐴) + ((𝐴↑2) / 2)) ∈ ℂ) |
| 11 | df-3 12210 | . . 3 ⊢ 3 = (2 + 1) | |
| 12 | 2nn0 12419 | . . 3 ⊢ 2 ∈ ℕ0 | |
| 13 | df-2 12209 | . . . 4 ⊢ 2 = (1 + 1) | |
| 14 | 1nn0 12418 | . . . 4 ⊢ 1 ∈ ℕ0 | |
| 15 | 5 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ ℂ → 1 ∈ ℂ) |
| 16 | 1e0p1 12651 | . . . . 5 ⊢ 1 = (0 + 1) | |
| 17 | 0nn0 12417 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 18 | 0cnd 11127 | . . . . 5 ⊢ (𝐴 ∈ ℂ → 0 ∈ ℂ) | |
| 19 | 1 | efval2 16009 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 (𝐹‘𝑘)) |
| 20 | nn0uz 12795 | . . . . . . . . 9 ⊢ ℕ0 = (ℤ≥‘0) | |
| 21 | 20 | sumeq1i 15622 | . . . . . . . 8 ⊢ Σ𝑘 ∈ ℕ0 (𝐹‘𝑘) = Σ𝑘 ∈ (ℤ≥‘0)(𝐹‘𝑘) |
| 22 | 19, 21 | eqtr2di 2781 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → Σ𝑘 ∈ (ℤ≥‘0)(𝐹‘𝑘) = (exp‘𝐴)) |
| 23 | 22 | oveq2d 7369 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (0 + Σ𝑘 ∈ (ℤ≥‘0)(𝐹‘𝑘)) = (0 + (exp‘𝐴))) |
| 24 | efcl 16007 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ) | |
| 25 | 24 | addlidd 11335 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (0 + (exp‘𝐴)) = (exp‘𝐴)) |
| 26 | 23, 25 | eqtr2d 2765 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = (0 + Σ𝑘 ∈ (ℤ≥‘0)(𝐹‘𝑘))) |
| 27 | eft0val 16039 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((𝐴↑0) / (!‘0)) = 1) | |
| 28 | 27 | oveq2d 7369 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (0 + ((𝐴↑0) / (!‘0))) = (0 + 1)) |
| 29 | 0p1e1 12263 | . . . . . 6 ⊢ (0 + 1) = 1 | |
| 30 | 28, 29 | eqtrdi 2780 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (0 + ((𝐴↑0) / (!‘0))) = 1) |
| 31 | 1, 16, 17, 4, 18, 26, 30 | efsep 16037 | . . . 4 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = (1 + Σ𝑘 ∈ (ℤ≥‘1)(𝐹‘𝑘))) |
| 32 | exp1 13992 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) | |
| 33 | fac1 14202 | . . . . . . . 8 ⊢ (!‘1) = 1 | |
| 34 | 33 | a1i 11 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (!‘1) = 1) |
| 35 | 32, 34 | oveq12d 7371 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((𝐴↑1) / (!‘1)) = (𝐴 / 1)) |
| 36 | div1 11832 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴) | |
| 37 | 35, 36 | eqtrd 2764 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((𝐴↑1) / (!‘1)) = 𝐴) |
| 38 | 37 | oveq2d 7369 | . . . 4 ⊢ (𝐴 ∈ ℂ → (1 + ((𝐴↑1) / (!‘1))) = (1 + 𝐴)) |
| 39 | 1, 13, 14, 4, 15, 31, 38 | efsep 16037 | . . 3 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = ((1 + 𝐴) + Σ𝑘 ∈ (ℤ≥‘2)(𝐹‘𝑘))) |
| 40 | fac2 14204 | . . . . . 6 ⊢ (!‘2) = 2 | |
| 41 | 40 | oveq2i 7364 | . . . . 5 ⊢ ((𝐴↑2) / (!‘2)) = ((𝐴↑2) / 2) |
| 42 | 41 | oveq2i 7364 | . . . 4 ⊢ ((1 + 𝐴) + ((𝐴↑2) / (!‘2))) = ((1 + 𝐴) + ((𝐴↑2) / 2)) |
| 43 | 42 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℂ → ((1 + 𝐴) + ((𝐴↑2) / (!‘2))) = ((1 + 𝐴) + ((𝐴↑2) / 2))) |
| 44 | 1, 11, 12, 4, 7, 39, 43 | efsep 16037 | . 2 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = (((1 + 𝐴) + ((𝐴↑2) / 2)) + Σ𝑘 ∈ (ℤ≥‘3)(𝐹‘𝑘))) |
| 45 | fac3 14205 | . . . . 5 ⊢ (!‘3) = 6 | |
| 46 | 45 | oveq2i 7364 | . . . 4 ⊢ ((𝐴↑3) / (!‘3)) = ((𝐴↑3) / 6) |
| 47 | 46 | oveq2i 7364 | . . 3 ⊢ (((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / (!‘3))) = (((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6)) |
| 48 | 47 | a1i 11 | . 2 ⊢ (𝐴 ∈ ℂ → (((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / (!‘3))) = (((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6))) |
| 49 | 1, 2, 3, 4, 10, 44, 48 | efsep 16037 | 1 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = ((((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6)) + Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5176 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 0cc0 11028 1c1 11029 + caddc 11031 / cdiv 11795 2c2 12201 3c3 12202 4c4 12203 6c6 12205 ℕ0cn0 12402 ℤ≥cuz 12753 ↑cexp 13986 !cfa 14198 Σcsu 15611 expce 15986 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-pm 8763 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-inf 9352 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-n0 12403 df-z 12490 df-uz 12754 df-rp 12912 df-ico 13272 df-fz 13429 df-fzo 13576 df-fl 13714 df-seq 13927 df-exp 13987 df-fac 14199 df-hash 14256 df-shft 14992 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-limsup 15396 df-clim 15413 df-rlim 15414 df-sum 15612 df-ef 15992 |
| This theorem is referenced by: efi4p 16064 |
| Copyright terms: Public domain | W3C validator |