| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ef4p | Structured version Visualization version GIF version | ||
| Description: Separate out the first four terms of the infinite series expansion of the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 29-Apr-2014.) |
| Ref | Expression |
|---|---|
| ef4p.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) |
| Ref | Expression |
|---|---|
| ef4p | ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = ((((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6)) + Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ef4p.1 | . 2 ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) | |
| 2 | df-4 12310 | . 2 ⊢ 4 = (3 + 1) | |
| 3 | 3nn0 12524 | . 2 ⊢ 3 ∈ ℕ0 | |
| 4 | id 22 | . 2 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
| 5 | ax-1cn 11192 | . . . 4 ⊢ 1 ∈ ℂ | |
| 6 | addcl 11216 | . . . 4 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 + 𝐴) ∈ ℂ) | |
| 7 | 5, 6 | mpan 690 | . . 3 ⊢ (𝐴 ∈ ℂ → (1 + 𝐴) ∈ ℂ) |
| 8 | sqcl 14141 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ) | |
| 9 | 8 | halfcld 12491 | . . 3 ⊢ (𝐴 ∈ ℂ → ((𝐴↑2) / 2) ∈ ℂ) |
| 10 | 7, 9 | addcld 11259 | . 2 ⊢ (𝐴 ∈ ℂ → ((1 + 𝐴) + ((𝐴↑2) / 2)) ∈ ℂ) |
| 11 | df-3 12309 | . . 3 ⊢ 3 = (2 + 1) | |
| 12 | 2nn0 12523 | . . 3 ⊢ 2 ∈ ℕ0 | |
| 13 | df-2 12308 | . . . 4 ⊢ 2 = (1 + 1) | |
| 14 | 1nn0 12522 | . . . 4 ⊢ 1 ∈ ℕ0 | |
| 15 | 5 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ ℂ → 1 ∈ ℂ) |
| 16 | 1e0p1 12755 | . . . . 5 ⊢ 1 = (0 + 1) | |
| 17 | 0nn0 12521 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 18 | 0cnd 11233 | . . . . 5 ⊢ (𝐴 ∈ ℂ → 0 ∈ ℂ) | |
| 19 | 1 | efval2 16105 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 (𝐹‘𝑘)) |
| 20 | nn0uz 12899 | . . . . . . . . 9 ⊢ ℕ0 = (ℤ≥‘0) | |
| 21 | 20 | sumeq1i 15718 | . . . . . . . 8 ⊢ Σ𝑘 ∈ ℕ0 (𝐹‘𝑘) = Σ𝑘 ∈ (ℤ≥‘0)(𝐹‘𝑘) |
| 22 | 19, 21 | eqtr2di 2788 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → Σ𝑘 ∈ (ℤ≥‘0)(𝐹‘𝑘) = (exp‘𝐴)) |
| 23 | 22 | oveq2d 7426 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (0 + Σ𝑘 ∈ (ℤ≥‘0)(𝐹‘𝑘)) = (0 + (exp‘𝐴))) |
| 24 | efcl 16103 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ) | |
| 25 | 24 | addlidd 11441 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (0 + (exp‘𝐴)) = (exp‘𝐴)) |
| 26 | 23, 25 | eqtr2d 2772 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = (0 + Σ𝑘 ∈ (ℤ≥‘0)(𝐹‘𝑘))) |
| 27 | eft0val 16135 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((𝐴↑0) / (!‘0)) = 1) | |
| 28 | 27 | oveq2d 7426 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (0 + ((𝐴↑0) / (!‘0))) = (0 + 1)) |
| 29 | 0p1e1 12367 | . . . . . 6 ⊢ (0 + 1) = 1 | |
| 30 | 28, 29 | eqtrdi 2787 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (0 + ((𝐴↑0) / (!‘0))) = 1) |
| 31 | 1, 16, 17, 4, 18, 26, 30 | efsep 16133 | . . . 4 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = (1 + Σ𝑘 ∈ (ℤ≥‘1)(𝐹‘𝑘))) |
| 32 | exp1 14090 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) | |
| 33 | fac1 14300 | . . . . . . . 8 ⊢ (!‘1) = 1 | |
| 34 | 33 | a1i 11 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (!‘1) = 1) |
| 35 | 32, 34 | oveq12d 7428 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((𝐴↑1) / (!‘1)) = (𝐴 / 1)) |
| 36 | div1 11936 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴) | |
| 37 | 35, 36 | eqtrd 2771 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((𝐴↑1) / (!‘1)) = 𝐴) |
| 38 | 37 | oveq2d 7426 | . . . 4 ⊢ (𝐴 ∈ ℂ → (1 + ((𝐴↑1) / (!‘1))) = (1 + 𝐴)) |
| 39 | 1, 13, 14, 4, 15, 31, 38 | efsep 16133 | . . 3 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = ((1 + 𝐴) + Σ𝑘 ∈ (ℤ≥‘2)(𝐹‘𝑘))) |
| 40 | fac2 14302 | . . . . . 6 ⊢ (!‘2) = 2 | |
| 41 | 40 | oveq2i 7421 | . . . . 5 ⊢ ((𝐴↑2) / (!‘2)) = ((𝐴↑2) / 2) |
| 42 | 41 | oveq2i 7421 | . . . 4 ⊢ ((1 + 𝐴) + ((𝐴↑2) / (!‘2))) = ((1 + 𝐴) + ((𝐴↑2) / 2)) |
| 43 | 42 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℂ → ((1 + 𝐴) + ((𝐴↑2) / (!‘2))) = ((1 + 𝐴) + ((𝐴↑2) / 2))) |
| 44 | 1, 11, 12, 4, 7, 39, 43 | efsep 16133 | . 2 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = (((1 + 𝐴) + ((𝐴↑2) / 2)) + Σ𝑘 ∈ (ℤ≥‘3)(𝐹‘𝑘))) |
| 45 | fac3 14303 | . . . . 5 ⊢ (!‘3) = 6 | |
| 46 | 45 | oveq2i 7421 | . . . 4 ⊢ ((𝐴↑3) / (!‘3)) = ((𝐴↑3) / 6) |
| 47 | 46 | oveq2i 7421 | . . 3 ⊢ (((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / (!‘3))) = (((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6)) |
| 48 | 47 | a1i 11 | . 2 ⊢ (𝐴 ∈ ℂ → (((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / (!‘3))) = (((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6))) |
| 49 | 1, 2, 3, 4, 10, 44, 48 | efsep 16133 | 1 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = ((((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6)) + Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5206 ‘cfv 6536 (class class class)co 7410 ℂcc 11132 0cc0 11134 1c1 11135 + caddc 11137 / cdiv 11899 2c2 12300 3c3 12301 4c4 12302 6c6 12304 ℕ0cn0 12506 ℤ≥cuz 12857 ↑cexp 14084 !cfa 14296 Σcsu 15707 expce 16082 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9459 df-inf 9460 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-n0 12507 df-z 12594 df-uz 12858 df-rp 13014 df-ico 13373 df-fz 13530 df-fzo 13677 df-fl 13814 df-seq 14025 df-exp 14085 df-fac 14297 df-hash 14354 df-shft 15091 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-limsup 15492 df-clim 15509 df-rlim 15510 df-sum 15708 df-ef 16088 |
| This theorem is referenced by: efi4p 16160 |
| Copyright terms: Public domain | W3C validator |