| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ef4p | Structured version Visualization version GIF version | ||
| Description: Separate out the first four terms of the infinite series expansion of the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 29-Apr-2014.) |
| Ref | Expression |
|---|---|
| ef4p.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) |
| Ref | Expression |
|---|---|
| ef4p | ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = ((((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6)) + Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ef4p.1 | . 2 ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) | |
| 2 | df-4 12201 | . 2 ⊢ 4 = (3 + 1) | |
| 3 | 3nn0 12410 | . 2 ⊢ 3 ∈ ℕ0 | |
| 4 | id 22 | . 2 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
| 5 | ax-1cn 11075 | . . . 4 ⊢ 1 ∈ ℂ | |
| 6 | addcl 11099 | . . . 4 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 + 𝐴) ∈ ℂ) | |
| 7 | 5, 6 | mpan 690 | . . 3 ⊢ (𝐴 ∈ ℂ → (1 + 𝐴) ∈ ℂ) |
| 8 | sqcl 14032 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ) | |
| 9 | 8 | halfcld 12377 | . . 3 ⊢ (𝐴 ∈ ℂ → ((𝐴↑2) / 2) ∈ ℂ) |
| 10 | 7, 9 | addcld 11142 | . 2 ⊢ (𝐴 ∈ ℂ → ((1 + 𝐴) + ((𝐴↑2) / 2)) ∈ ℂ) |
| 11 | df-3 12200 | . . 3 ⊢ 3 = (2 + 1) | |
| 12 | 2nn0 12409 | . . 3 ⊢ 2 ∈ ℕ0 | |
| 13 | df-2 12199 | . . . 4 ⊢ 2 = (1 + 1) | |
| 14 | 1nn0 12408 | . . . 4 ⊢ 1 ∈ ℕ0 | |
| 15 | 5 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ ℂ → 1 ∈ ℂ) |
| 16 | 1e0p1 12640 | . . . . 5 ⊢ 1 = (0 + 1) | |
| 17 | 0nn0 12407 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 18 | 0cnd 11116 | . . . . 5 ⊢ (𝐴 ∈ ℂ → 0 ∈ ℂ) | |
| 19 | 1 | efval2 15998 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 (𝐹‘𝑘)) |
| 20 | nn0uz 12780 | . . . . . . . . 9 ⊢ ℕ0 = (ℤ≥‘0) | |
| 21 | 20 | sumeq1i 15611 | . . . . . . . 8 ⊢ Σ𝑘 ∈ ℕ0 (𝐹‘𝑘) = Σ𝑘 ∈ (ℤ≥‘0)(𝐹‘𝑘) |
| 22 | 19, 21 | eqtr2di 2785 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → Σ𝑘 ∈ (ℤ≥‘0)(𝐹‘𝑘) = (exp‘𝐴)) |
| 23 | 22 | oveq2d 7371 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (0 + Σ𝑘 ∈ (ℤ≥‘0)(𝐹‘𝑘)) = (0 + (exp‘𝐴))) |
| 24 | efcl 15996 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ) | |
| 25 | 24 | addlidd 11325 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (0 + (exp‘𝐴)) = (exp‘𝐴)) |
| 26 | 23, 25 | eqtr2d 2769 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = (0 + Σ𝑘 ∈ (ℤ≥‘0)(𝐹‘𝑘))) |
| 27 | eft0val 16028 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((𝐴↑0) / (!‘0)) = 1) | |
| 28 | 27 | oveq2d 7371 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (0 + ((𝐴↑0) / (!‘0))) = (0 + 1)) |
| 29 | 0p1e1 12253 | . . . . . 6 ⊢ (0 + 1) = 1 | |
| 30 | 28, 29 | eqtrdi 2784 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (0 + ((𝐴↑0) / (!‘0))) = 1) |
| 31 | 1, 16, 17, 4, 18, 26, 30 | efsep 16026 | . . . 4 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = (1 + Σ𝑘 ∈ (ℤ≥‘1)(𝐹‘𝑘))) |
| 32 | exp1 13981 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) | |
| 33 | fac1 14191 | . . . . . . . 8 ⊢ (!‘1) = 1 | |
| 34 | 33 | a1i 11 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (!‘1) = 1) |
| 35 | 32, 34 | oveq12d 7373 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((𝐴↑1) / (!‘1)) = (𝐴 / 1)) |
| 36 | div1 11822 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴) | |
| 37 | 35, 36 | eqtrd 2768 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((𝐴↑1) / (!‘1)) = 𝐴) |
| 38 | 37 | oveq2d 7371 | . . . 4 ⊢ (𝐴 ∈ ℂ → (1 + ((𝐴↑1) / (!‘1))) = (1 + 𝐴)) |
| 39 | 1, 13, 14, 4, 15, 31, 38 | efsep 16026 | . . 3 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = ((1 + 𝐴) + Σ𝑘 ∈ (ℤ≥‘2)(𝐹‘𝑘))) |
| 40 | fac2 14193 | . . . . . 6 ⊢ (!‘2) = 2 | |
| 41 | 40 | oveq2i 7366 | . . . . 5 ⊢ ((𝐴↑2) / (!‘2)) = ((𝐴↑2) / 2) |
| 42 | 41 | oveq2i 7366 | . . . 4 ⊢ ((1 + 𝐴) + ((𝐴↑2) / (!‘2))) = ((1 + 𝐴) + ((𝐴↑2) / 2)) |
| 43 | 42 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℂ → ((1 + 𝐴) + ((𝐴↑2) / (!‘2))) = ((1 + 𝐴) + ((𝐴↑2) / 2))) |
| 44 | 1, 11, 12, 4, 7, 39, 43 | efsep 16026 | . 2 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = (((1 + 𝐴) + ((𝐴↑2) / 2)) + Σ𝑘 ∈ (ℤ≥‘3)(𝐹‘𝑘))) |
| 45 | fac3 14194 | . . . . 5 ⊢ (!‘3) = 6 | |
| 46 | 45 | oveq2i 7366 | . . . 4 ⊢ ((𝐴↑3) / (!‘3)) = ((𝐴↑3) / 6) |
| 47 | 46 | oveq2i 7366 | . . 3 ⊢ (((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / (!‘3))) = (((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6)) |
| 48 | 47 | a1i 11 | . 2 ⊢ (𝐴 ∈ ℂ → (((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / (!‘3))) = (((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6))) |
| 49 | 1, 2, 3, 4, 10, 44, 48 | efsep 16026 | 1 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = ((((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6)) + Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ↦ cmpt 5176 ‘cfv 6489 (class class class)co 7355 ℂcc 11015 0cc0 11017 1c1 11018 + caddc 11020 / cdiv 11785 2c2 12191 3c3 12192 4c4 12193 6c6 12195 ℕ0cn0 12392 ℤ≥cuz 12742 ↑cexp 13975 !cfa 14187 Σcsu 15600 expce 15975 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9542 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-pm 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9337 df-inf 9338 df-oi 9407 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-n0 12393 df-z 12480 df-uz 12743 df-rp 12897 df-ico 13258 df-fz 13415 df-fzo 13562 df-fl 13703 df-seq 13916 df-exp 13976 df-fac 14188 df-hash 14245 df-shft 14981 df-cj 15013 df-re 15014 df-im 15015 df-sqrt 15149 df-abs 15150 df-limsup 15385 df-clim 15402 df-rlim 15403 df-sum 15601 df-ef 15981 |
| This theorem is referenced by: efi4p 16053 |
| Copyright terms: Public domain | W3C validator |