Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ef4p | Structured version Visualization version GIF version |
Description: Separate out the first four terms of the infinite series expansion of the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 29-Apr-2014.) |
Ref | Expression |
---|---|
ef4p.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) |
Ref | Expression |
---|---|
ef4p | ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = ((((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6)) + Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ef4p.1 | . 2 ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) | |
2 | df-4 12084 | . 2 ⊢ 4 = (3 + 1) | |
3 | 3nn0 12297 | . 2 ⊢ 3 ∈ ℕ0 | |
4 | id 22 | . 2 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
5 | ax-1cn 10975 | . . . 4 ⊢ 1 ∈ ℂ | |
6 | addcl 10999 | . . . 4 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 + 𝐴) ∈ ℂ) | |
7 | 5, 6 | mpan 688 | . . 3 ⊢ (𝐴 ∈ ℂ → (1 + 𝐴) ∈ ℂ) |
8 | sqcl 13884 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ) | |
9 | 8 | halfcld 12264 | . . 3 ⊢ (𝐴 ∈ ℂ → ((𝐴↑2) / 2) ∈ ℂ) |
10 | 7, 9 | addcld 11040 | . 2 ⊢ (𝐴 ∈ ℂ → ((1 + 𝐴) + ((𝐴↑2) / 2)) ∈ ℂ) |
11 | df-3 12083 | . . 3 ⊢ 3 = (2 + 1) | |
12 | 2nn0 12296 | . . 3 ⊢ 2 ∈ ℕ0 | |
13 | df-2 12082 | . . . 4 ⊢ 2 = (1 + 1) | |
14 | 1nn0 12295 | . . . 4 ⊢ 1 ∈ ℕ0 | |
15 | 5 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ ℂ → 1 ∈ ℂ) |
16 | 1e0p1 12525 | . . . . 5 ⊢ 1 = (0 + 1) | |
17 | 0nn0 12294 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
18 | 0cnd 11014 | . . . . 5 ⊢ (𝐴 ∈ ℂ → 0 ∈ ℂ) | |
19 | 1 | efval2 15838 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 (𝐹‘𝑘)) |
20 | nn0uz 12666 | . . . . . . . . 9 ⊢ ℕ0 = (ℤ≥‘0) | |
21 | 20 | sumeq1i 15455 | . . . . . . . 8 ⊢ Σ𝑘 ∈ ℕ0 (𝐹‘𝑘) = Σ𝑘 ∈ (ℤ≥‘0)(𝐹‘𝑘) |
22 | 19, 21 | eqtr2di 2793 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → Σ𝑘 ∈ (ℤ≥‘0)(𝐹‘𝑘) = (exp‘𝐴)) |
23 | 22 | oveq2d 7323 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (0 + Σ𝑘 ∈ (ℤ≥‘0)(𝐹‘𝑘)) = (0 + (exp‘𝐴))) |
24 | efcl 15837 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ) | |
25 | 24 | addid2d 11222 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (0 + (exp‘𝐴)) = (exp‘𝐴)) |
26 | 23, 25 | eqtr2d 2777 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = (0 + Σ𝑘 ∈ (ℤ≥‘0)(𝐹‘𝑘))) |
27 | eft0val 15866 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((𝐴↑0) / (!‘0)) = 1) | |
28 | 27 | oveq2d 7323 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (0 + ((𝐴↑0) / (!‘0))) = (0 + 1)) |
29 | 0p1e1 12141 | . . . . . 6 ⊢ (0 + 1) = 1 | |
30 | 28, 29 | eqtrdi 2792 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (0 + ((𝐴↑0) / (!‘0))) = 1) |
31 | 1, 16, 17, 4, 18, 26, 30 | efsep 15864 | . . . 4 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = (1 + Σ𝑘 ∈ (ℤ≥‘1)(𝐹‘𝑘))) |
32 | exp1 13834 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) | |
33 | fac1 14037 | . . . . . . . 8 ⊢ (!‘1) = 1 | |
34 | 33 | a1i 11 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (!‘1) = 1) |
35 | 32, 34 | oveq12d 7325 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((𝐴↑1) / (!‘1)) = (𝐴 / 1)) |
36 | div1 11710 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴) | |
37 | 35, 36 | eqtrd 2776 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((𝐴↑1) / (!‘1)) = 𝐴) |
38 | 37 | oveq2d 7323 | . . . 4 ⊢ (𝐴 ∈ ℂ → (1 + ((𝐴↑1) / (!‘1))) = (1 + 𝐴)) |
39 | 1, 13, 14, 4, 15, 31, 38 | efsep 15864 | . . 3 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = ((1 + 𝐴) + Σ𝑘 ∈ (ℤ≥‘2)(𝐹‘𝑘))) |
40 | fac2 14039 | . . . . . 6 ⊢ (!‘2) = 2 | |
41 | 40 | oveq2i 7318 | . . . . 5 ⊢ ((𝐴↑2) / (!‘2)) = ((𝐴↑2) / 2) |
42 | 41 | oveq2i 7318 | . . . 4 ⊢ ((1 + 𝐴) + ((𝐴↑2) / (!‘2))) = ((1 + 𝐴) + ((𝐴↑2) / 2)) |
43 | 42 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℂ → ((1 + 𝐴) + ((𝐴↑2) / (!‘2))) = ((1 + 𝐴) + ((𝐴↑2) / 2))) |
44 | 1, 11, 12, 4, 7, 39, 43 | efsep 15864 | . 2 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = (((1 + 𝐴) + ((𝐴↑2) / 2)) + Σ𝑘 ∈ (ℤ≥‘3)(𝐹‘𝑘))) |
45 | fac3 14040 | . . . . 5 ⊢ (!‘3) = 6 | |
46 | 45 | oveq2i 7318 | . . . 4 ⊢ ((𝐴↑3) / (!‘3)) = ((𝐴↑3) / 6) |
47 | 46 | oveq2i 7318 | . . 3 ⊢ (((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / (!‘3))) = (((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6)) |
48 | 47 | a1i 11 | . 2 ⊢ (𝐴 ∈ ℂ → (((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / (!‘3))) = (((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6))) |
49 | 1, 2, 3, 4, 10, 44, 48 | efsep 15864 | 1 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = ((((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6)) + Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 ↦ cmpt 5164 ‘cfv 6458 (class class class)co 7307 ℂcc 10915 0cc0 10917 1c1 10918 + caddc 10920 / cdiv 11678 2c2 12074 3c3 12075 4c4 12076 6c6 12078 ℕ0cn0 12279 ℤ≥cuz 12628 ↑cexp 13828 !cfa 14033 Σcsu 15442 expce 15816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-inf2 9443 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 ax-pre-sup 10995 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-pm 8649 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-sup 9245 df-inf 9246 df-oi 9313 df-card 9741 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-div 11679 df-nn 12020 df-2 12082 df-3 12083 df-4 12084 df-5 12085 df-6 12086 df-n0 12280 df-z 12366 df-uz 12629 df-rp 12777 df-ico 13131 df-fz 13286 df-fzo 13429 df-fl 13558 df-seq 13768 df-exp 13829 df-fac 14034 df-hash 14091 df-shft 14823 df-cj 14855 df-re 14856 df-im 14857 df-sqrt 14991 df-abs 14992 df-limsup 15225 df-clim 15242 df-rlim 15243 df-sum 15443 df-ef 15822 |
This theorem is referenced by: efi4p 15891 |
Copyright terms: Public domain | W3C validator |