| Mathbox for Filip Cernatescu |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > problem3 | Structured version Visualization version GIF version | ||
| Description: Practice problem 3. Clues: eqcomi 2745 eqtri 2764 subaddrii 11599 recni 11276 4re 12351 3re 12347 1re 11262 df-4 12332 addcomi 11453. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| problem3.1 | ⊢ 𝐴 ∈ ℂ |
| problem3.2 | ⊢ (𝐴 + 3) = 4 |
| Ref | Expression |
|---|---|
| problem3 | ⊢ 𝐴 = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4re 12351 | . . . . . 6 ⊢ 4 ∈ ℝ | |
| 2 | 1 | recni 11276 | . . . . 5 ⊢ 4 ∈ ℂ |
| 3 | 3re 12347 | . . . . . 6 ⊢ 3 ∈ ℝ | |
| 4 | 3 | recni 11276 | . . . . 5 ⊢ 3 ∈ ℂ |
| 5 | 1re 11262 | . . . . . 6 ⊢ 1 ∈ ℝ | |
| 6 | 5 | recni 11276 | . . . . 5 ⊢ 1 ∈ ℂ |
| 7 | df-4 12332 | . . . . . 6 ⊢ 4 = (3 + 1) | |
| 8 | 7 | eqcomi 2745 | . . . . 5 ⊢ (3 + 1) = 4 |
| 9 | 2, 4, 6, 8 | subaddrii 11599 | . . . 4 ⊢ (4 − 3) = 1 |
| 10 | 9 | eqcomi 2745 | . . 3 ⊢ 1 = (4 − 3) |
| 11 | problem3.1 | . . . 4 ⊢ 𝐴 ∈ ℂ | |
| 12 | 4, 11 | addcomi 11453 | . . . . 5 ⊢ (3 + 𝐴) = (𝐴 + 3) |
| 13 | problem3.2 | . . . . 5 ⊢ (𝐴 + 3) = 4 | |
| 14 | 12, 13 | eqtri 2764 | . . . 4 ⊢ (3 + 𝐴) = 4 |
| 15 | 2, 4, 11, 14 | subaddrii 11599 | . . 3 ⊢ (4 − 3) = 𝐴 |
| 16 | 10, 15 | eqtri 2764 | . 2 ⊢ 1 = 𝐴 |
| 17 | 16 | eqcomi 2745 | 1 ⊢ 𝐴 = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 (class class class)co 7432 ℂcc 11154 1c1 11157 + caddc 11159 − cmin 11493 3c3 12323 4c4 12324 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-po 5591 df-so 5592 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-ltxr 11301 df-sub 11495 df-2 12330 df-3 12331 df-4 12332 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |