![]() |
Mathbox for Filip Cernatescu |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > problem3 | Structured version Visualization version GIF version |
Description: Practice problem 3. Clues: eqcomi 2808 eqtri 2821 subaddrii 10662 recni 10343 4re 11398 3re 11393 1re 10328 df-4 11378 addcomi 10517. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
problem3.1 | ⊢ 𝐴 ∈ ℂ |
problem3.2 | ⊢ (𝐴 + 3) = 4 |
Ref | Expression |
---|---|
problem3 | ⊢ 𝐴 = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4re 11398 | . . . . . 6 ⊢ 4 ∈ ℝ | |
2 | 1 | recni 10343 | . . . . 5 ⊢ 4 ∈ ℂ |
3 | 3re 11393 | . . . . . 6 ⊢ 3 ∈ ℝ | |
4 | 3 | recni 10343 | . . . . 5 ⊢ 3 ∈ ℂ |
5 | 1re 10328 | . . . . . 6 ⊢ 1 ∈ ℝ | |
6 | 5 | recni 10343 | . . . . 5 ⊢ 1 ∈ ℂ |
7 | df-4 11378 | . . . . . 6 ⊢ 4 = (3 + 1) | |
8 | 7 | eqcomi 2808 | . . . . 5 ⊢ (3 + 1) = 4 |
9 | 2, 4, 6, 8 | subaddrii 10662 | . . . 4 ⊢ (4 − 3) = 1 |
10 | 9 | eqcomi 2808 | . . 3 ⊢ 1 = (4 − 3) |
11 | problem3.1 | . . . 4 ⊢ 𝐴 ∈ ℂ | |
12 | 4, 11 | addcomi 10517 | . . . . 5 ⊢ (3 + 𝐴) = (𝐴 + 3) |
13 | problem3.2 | . . . . 5 ⊢ (𝐴 + 3) = 4 | |
14 | 12, 13 | eqtri 2821 | . . . 4 ⊢ (3 + 𝐴) = 4 |
15 | 2, 4, 11, 14 | subaddrii 10662 | . . 3 ⊢ (4 − 3) = 𝐴 |
16 | 10, 15 | eqtri 2821 | . 2 ⊢ 1 = 𝐴 |
17 | 16 | eqcomi 2808 | 1 ⊢ 𝐴 = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 ∈ wcel 2157 (class class class)co 6878 ℂcc 10222 1c1 10225 + caddc 10227 − cmin 10556 3c3 11369 4c4 11370 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-po 5233 df-so 5234 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-pnf 10365 df-mnf 10366 df-ltxr 10368 df-sub 10558 df-2 11376 df-3 11377 df-4 11378 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |