MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipval2 Structured version   Visualization version   GIF version

Theorem ipval2 30643
Description: Expansion of the inner product value ipval 30639. (Contributed by NM, 31-Jan-2007.) (Revised by Mario Carneiro, 5-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dipfval.1 𝑋 = (BaseSet‘𝑈)
dipfval.2 𝐺 = ( +𝑣𝑈)
dipfval.4 𝑆 = ( ·𝑠OLD𝑈)
dipfval.6 𝑁 = (normCV𝑈)
dipfval.7 𝑃 = (·𝑖OLD𝑈)
Assertion
Ref Expression
ipval2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) = (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) / 4))

Proof of Theorem ipval2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 dipfval.1 . . 3 𝑋 = (BaseSet‘𝑈)
2 dipfval.2 . . 3 𝐺 = ( +𝑣𝑈)
3 dipfval.4 . . 3 𝑆 = ( ·𝑠OLD𝑈)
4 dipfval.6 . . 3 𝑁 = (normCV𝑈)
5 dipfval.7 . . 3 𝑃 = (·𝑖OLD𝑈)
61, 2, 3, 4, 5ipval 30639 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) / 4))
7 ax-icn 11134 . . . . . . . . 9 i ∈ ℂ
81, 2, 3, 4, 5ipval2lem4 30642 . . . . . . . . . 10 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ i ∈ ℂ) → ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) ∈ ℂ)
97, 8mpan2 691 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) ∈ ℂ)
10 mulcl 11159 . . . . . . . . 9 ((i ∈ ℂ ∧ ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) ∈ ℂ) → (i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) ∈ ℂ)
117, 9, 10sylancr 587 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) ∈ ℂ)
12 neg1cn 12178 . . . . . . . . 9 -1 ∈ ℂ
131, 2, 3, 4, 5ipval2lem4 30642 . . . . . . . . 9 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ -1 ∈ ℂ) → ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2) ∈ ℂ)
1412, 13mpan2 691 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2) ∈ ℂ)
1511, 14subcld 11540 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) ∈ ℂ)
16 negicn 11429 . . . . . . . . 9 -i ∈ ℂ
171, 2, 3, 4, 5ipval2lem4 30642 . . . . . . . . 9 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ -i ∈ ℂ) → ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2) ∈ ℂ)
1816, 17mpan2 691 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2) ∈ ℂ)
19 mulcl 11159 . . . . . . . 8 ((i ∈ ℂ ∧ ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2) ∈ ℂ) → (i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)) ∈ ℂ)
207, 18, 19sylancr 587 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)) ∈ ℂ)
2115, 20negsubd 11546 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + -(i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) = (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) − (i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))))
2214mulm1d 11637 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = -((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))
2322oveq2d 7406 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) = ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + -((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)))
2411, 14negsubd 11546 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + -((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)))
2523, 24eqtrd 2765 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) = ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)))
26 mulneg1 11621 . . . . . . . 8 ((i ∈ ℂ ∧ ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2) ∈ ℂ) → (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)) = -(i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))
277, 18, 26sylancr 587 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)) = -(i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))
2825, 27oveq12d 7408 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) + (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) = (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + -(i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))))
29 subdi 11618 . . . . . . . . . 10 ((i ∈ ℂ ∧ ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) ∈ ℂ ∧ ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2) ∈ ℂ) → (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) = ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − (i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))))
307, 29mp3an1 1450 . . . . . . . . 9 ((((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) ∈ ℂ ∧ ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2) ∈ ℂ) → (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) = ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − (i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))))
319, 18, 30syl2anc 584 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) = ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − (i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))))
3231oveq1d 7405 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − (i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)))
3311, 20, 14sub32d 11572 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − (i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) − (i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))))
3432, 33eqtrd 2765 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) − (i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))))
3521, 28, 343eqtr4d 2775 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) + (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) = ((i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)))
361, 3nvsid 30563 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (1𝑆𝐵) = 𝐵)
3736oveq2d 7406 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (𝐴𝐺(1𝑆𝐵)) = (𝐴𝐺𝐵))
3837fveq2d 6865 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (𝑁‘(𝐴𝐺(1𝑆𝐵))) = (𝑁‘(𝐴𝐺𝐵)))
3938oveq1d 7405 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2) = ((𝑁‘(𝐴𝐺𝐵))↑2))
40393adant2 1131 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2) = ((𝑁‘(𝐴𝐺𝐵))↑2))
4140oveq2d 7406 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (1 · ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2)) = (1 · ((𝑁‘(𝐴𝐺𝐵))↑2)))
421, 2, 3, 4, 5ipval2lem3 30641 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴𝐺𝐵))↑2) ∈ ℝ)
4342recnd 11209 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴𝐺𝐵))↑2) ∈ ℂ)
4443mullidd 11199 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (1 · ((𝑁‘(𝐴𝐺𝐵))↑2)) = ((𝑁‘(𝐴𝐺𝐵))↑2))
4541, 44eqtrd 2765 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (1 · ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2)) = ((𝑁‘(𝐴𝐺𝐵))↑2))
4635, 45oveq12d 7408 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) + (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) + (1 · ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2))) = (((i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + ((𝑁‘(𝐴𝐺𝐵))↑2)))
47 nnuz 12843 . . . . . 6 ℕ = (ℤ‘1)
48 df-4 12258 . . . . . 6 4 = (3 + 1)
49 oveq2 7398 . . . . . . . 8 (𝑘 = 4 → (i↑𝑘) = (i↑4))
50 i4 14176 . . . . . . . 8 (i↑4) = 1
5149, 50eqtrdi 2781 . . . . . . 7 (𝑘 = 4 → (i↑𝑘) = 1)
5251oveq1d 7405 . . . . . . . . . 10 (𝑘 = 4 → ((i↑𝑘)𝑆𝐵) = (1𝑆𝐵))
5352oveq2d 7406 . . . . . . . . 9 (𝑘 = 4 → (𝐴𝐺((i↑𝑘)𝑆𝐵)) = (𝐴𝐺(1𝑆𝐵)))
5453fveq2d 6865 . . . . . . . 8 (𝑘 = 4 → (𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵))) = (𝑁‘(𝐴𝐺(1𝑆𝐵))))
5554oveq1d 7405 . . . . . . 7 (𝑘 = 4 → ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2) = ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2))
5651, 55oveq12d 7408 . . . . . 6 (𝑘 = 4 → ((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = (1 · ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2)))
57 nnnn0 12456 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
58 expcl 14051 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (i↑𝑘) ∈ ℂ)
597, 57, 58sylancr 587 . . . . . . . 8 (𝑘 ∈ ℕ → (i↑𝑘) ∈ ℂ)
6059adantl 481 . . . . . . 7 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → (i↑𝑘) ∈ ℂ)
611, 2, 3, 4, 5ipval2lem4 30642 . . . . . . . 8 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ (i↑𝑘) ∈ ℂ) → ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2) ∈ ℂ)
6259, 61sylan2 593 . . . . . . 7 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2) ∈ ℂ)
6360, 62mulcld 11201 . . . . . 6 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) ∈ ℂ)
64 df-3 12257 . . . . . . 7 3 = (2 + 1)
65 oveq2 7398 . . . . . . . . 9 (𝑘 = 3 → (i↑𝑘) = (i↑3))
66 i3 14175 . . . . . . . . 9 (i↑3) = -i
6765, 66eqtrdi 2781 . . . . . . . 8 (𝑘 = 3 → (i↑𝑘) = -i)
6867oveq1d 7405 . . . . . . . . . . 11 (𝑘 = 3 → ((i↑𝑘)𝑆𝐵) = (-i𝑆𝐵))
6968oveq2d 7406 . . . . . . . . . 10 (𝑘 = 3 → (𝐴𝐺((i↑𝑘)𝑆𝐵)) = (𝐴𝐺(-i𝑆𝐵)))
7069fveq2d 6865 . . . . . . . . 9 (𝑘 = 3 → (𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵))) = (𝑁‘(𝐴𝐺(-i𝑆𝐵))))
7170oveq1d 7405 . . . . . . . 8 (𝑘 = 3 → ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2) = ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))
7267, 71oveq12d 7408 . . . . . . 7 (𝑘 = 3 → ((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))
73 df-2 12256 . . . . . . . 8 2 = (1 + 1)
74 oveq2 7398 . . . . . . . . . 10 (𝑘 = 2 → (i↑𝑘) = (i↑2))
75 i2 14174 . . . . . . . . . 10 (i↑2) = -1
7674, 75eqtrdi 2781 . . . . . . . . 9 (𝑘 = 2 → (i↑𝑘) = -1)
7776oveq1d 7405 . . . . . . . . . . . 12 (𝑘 = 2 → ((i↑𝑘)𝑆𝐵) = (-1𝑆𝐵))
7877oveq2d 7406 . . . . . . . . . . 11 (𝑘 = 2 → (𝐴𝐺((i↑𝑘)𝑆𝐵)) = (𝐴𝐺(-1𝑆𝐵)))
7978fveq2d 6865 . . . . . . . . . 10 (𝑘 = 2 → (𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵))) = (𝑁‘(𝐴𝐺(-1𝑆𝐵))))
8079oveq1d 7405 . . . . . . . . 9 (𝑘 = 2 → ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2) = ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))
8176, 80oveq12d 7408 . . . . . . . 8 (𝑘 = 2 → ((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)))
82 1z 12570 . . . . . . . . . 10 1 ∈ ℤ
83 oveq2 7398 . . . . . . . . . . . . 13 (𝑘 = 1 → (i↑𝑘) = (i↑1))
84 exp1 14039 . . . . . . . . . . . . . 14 (i ∈ ℂ → (i↑1) = i)
857, 84ax-mp 5 . . . . . . . . . . . . 13 (i↑1) = i
8683, 85eqtrdi 2781 . . . . . . . . . . . 12 (𝑘 = 1 → (i↑𝑘) = i)
8786oveq1d 7405 . . . . . . . . . . . . . . 15 (𝑘 = 1 → ((i↑𝑘)𝑆𝐵) = (i𝑆𝐵))
8887oveq2d 7406 . . . . . . . . . . . . . 14 (𝑘 = 1 → (𝐴𝐺((i↑𝑘)𝑆𝐵)) = (𝐴𝐺(i𝑆𝐵)))
8988fveq2d 6865 . . . . . . . . . . . . 13 (𝑘 = 1 → (𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵))) = (𝑁‘(𝐴𝐺(i𝑆𝐵))))
9089oveq1d 7405 . . . . . . . . . . . 12 (𝑘 = 1 → ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2) = ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2))
9186, 90oveq12d 7408 . . . . . . . . . . 11 (𝑘 = 1 → ((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = (i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)))
9291fsum1 15720 . . . . . . . . . 10 ((1 ∈ ℤ ∧ (i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) ∈ ℂ) → Σ𝑘 ∈ (1...1)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = (i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)))
9382, 11, 92sylancr 587 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → Σ𝑘 ∈ (1...1)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = (i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)))
94 1nn 12204 . . . . . . . . 9 1 ∈ ℕ
9593, 94jctil 519 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (1 ∈ ℕ ∧ Σ𝑘 ∈ (1...1)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = (i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2))))
96 eqidd 2731 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) = ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))))
9747, 73, 81, 63, 95, 96fsump1i 15742 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (2 ∈ ℕ ∧ Σ𝑘 ∈ (1...2)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)))))
98 eqidd 2731 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) + (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) = (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) + (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))))
9947, 64, 72, 63, 97, 98fsump1i 15742 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (3 ∈ ℕ ∧ Σ𝑘 ∈ (1...3)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) + (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))))
100 eqidd 2731 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) + (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) + (1 · ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2))) = ((((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) + (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) + (1 · ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2))))
10147, 48, 56, 63, 99, 100fsump1i 15742 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (4 ∈ ℕ ∧ Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = ((((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) + (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) + (1 · ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2)))))
102101simprd 495 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = ((((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) + (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) + (1 · ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2))))
10343, 14subcld 11540 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) ∈ ℂ)
1049, 18subcld 11540 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)) ∈ ℂ)
105 mulcl 11159 . . . . . . 7 ((i ∈ ℂ ∧ (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)) ∈ ℂ) → (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) ∈ ℂ)
1067, 104, 105sylancr 587 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) ∈ ℂ)
107103, 106addcomd 11383 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) = ((i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) + (((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))))
108106, 14, 43subadd23d 11562 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + ((𝑁‘(𝐴𝐺𝐵))↑2)) = ((i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) + (((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))))
109107, 108eqtr4d 2768 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) = (((i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + ((𝑁‘(𝐴𝐺𝐵))↑2)))
11046, 102, 1093eqtr4d 2775 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = ((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))))
111110oveq1d 7405 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) / 4) = (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) / 4))
1126, 111eqtrd 2765 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) = (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) / 4))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6514  (class class class)co 7390  cc 11073  1c1 11076  ici 11077   + caddc 11078   · cmul 11080  cmin 11412  -cneg 11413   / cdiv 11842  cn 12193  2c2 12248  3c3 12249  4c4 12250  0cn0 12449  cz 12536  ...cfz 13475  cexp 14033  Σcsu 15659  NrmCVeccnv 30520   +𝑣 cpv 30521  BaseSetcba 30522   ·𝑠OLD cns 30523  normCVcnmcv 30526  ·𝑖OLDcdip 30636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-grpo 30429  df-ablo 30481  df-vc 30495  df-nv 30528  df-va 30531  df-ba 30532  df-sm 30533  df-0v 30534  df-nmcv 30536  df-dip 30637
This theorem is referenced by:  4ipval2  30644  ipval3  30645  ipidsq  30646  dipcj  30650  dip0r  30653
  Copyright terms: Public domain W3C validator