MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipval2 Structured version   Visualization version   GIF version

Theorem ipval2 30685
Description: Expansion of the inner product value ipval 30681. (Contributed by NM, 31-Jan-2007.) (Revised by Mario Carneiro, 5-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dipfval.1 𝑋 = (BaseSet‘𝑈)
dipfval.2 𝐺 = ( +𝑣𝑈)
dipfval.4 𝑆 = ( ·𝑠OLD𝑈)
dipfval.6 𝑁 = (normCV𝑈)
dipfval.7 𝑃 = (·𝑖OLD𝑈)
Assertion
Ref Expression
ipval2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) = (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) / 4))

Proof of Theorem ipval2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 dipfval.1 . . 3 𝑋 = (BaseSet‘𝑈)
2 dipfval.2 . . 3 𝐺 = ( +𝑣𝑈)
3 dipfval.4 . . 3 𝑆 = ( ·𝑠OLD𝑈)
4 dipfval.6 . . 3 𝑁 = (normCV𝑈)
5 dipfval.7 . . 3 𝑃 = (·𝑖OLD𝑈)
61, 2, 3, 4, 5ipval 30681 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) / 4))
7 ax-icn 11065 . . . . . . . . 9 i ∈ ℂ
81, 2, 3, 4, 5ipval2lem4 30684 . . . . . . . . . 10 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ i ∈ ℂ) → ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) ∈ ℂ)
97, 8mpan2 691 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) ∈ ℂ)
10 mulcl 11090 . . . . . . . . 9 ((i ∈ ℂ ∧ ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) ∈ ℂ) → (i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) ∈ ℂ)
117, 9, 10sylancr 587 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) ∈ ℂ)
12 neg1cn 12110 . . . . . . . . 9 -1 ∈ ℂ
131, 2, 3, 4, 5ipval2lem4 30684 . . . . . . . . 9 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ -1 ∈ ℂ) → ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2) ∈ ℂ)
1412, 13mpan2 691 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2) ∈ ℂ)
1511, 14subcld 11472 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) ∈ ℂ)
16 negicn 11361 . . . . . . . . 9 -i ∈ ℂ
171, 2, 3, 4, 5ipval2lem4 30684 . . . . . . . . 9 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ -i ∈ ℂ) → ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2) ∈ ℂ)
1816, 17mpan2 691 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2) ∈ ℂ)
19 mulcl 11090 . . . . . . . 8 ((i ∈ ℂ ∧ ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2) ∈ ℂ) → (i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)) ∈ ℂ)
207, 18, 19sylancr 587 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)) ∈ ℂ)
2115, 20negsubd 11478 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + -(i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) = (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) − (i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))))
2214mulm1d 11569 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = -((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))
2322oveq2d 7362 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) = ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + -((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)))
2411, 14negsubd 11478 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + -((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)))
2523, 24eqtrd 2766 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) = ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)))
26 mulneg1 11553 . . . . . . . 8 ((i ∈ ℂ ∧ ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2) ∈ ℂ) → (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)) = -(i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))
277, 18, 26sylancr 587 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)) = -(i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))
2825, 27oveq12d 7364 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) + (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) = (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + -(i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))))
29 subdi 11550 . . . . . . . . . 10 ((i ∈ ℂ ∧ ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) ∈ ℂ ∧ ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2) ∈ ℂ) → (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) = ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − (i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))))
307, 29mp3an1 1450 . . . . . . . . 9 ((((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) ∈ ℂ ∧ ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2) ∈ ℂ) → (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) = ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − (i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))))
319, 18, 30syl2anc 584 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) = ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − (i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))))
3231oveq1d 7361 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − (i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)))
3311, 20, 14sub32d 11504 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − (i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) − (i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))))
3432, 33eqtrd 2766 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) − (i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))))
3521, 28, 343eqtr4d 2776 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) + (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) = ((i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)))
361, 3nvsid 30605 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (1𝑆𝐵) = 𝐵)
3736oveq2d 7362 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (𝐴𝐺(1𝑆𝐵)) = (𝐴𝐺𝐵))
3837fveq2d 6826 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (𝑁‘(𝐴𝐺(1𝑆𝐵))) = (𝑁‘(𝐴𝐺𝐵)))
3938oveq1d 7361 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2) = ((𝑁‘(𝐴𝐺𝐵))↑2))
40393adant2 1131 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2) = ((𝑁‘(𝐴𝐺𝐵))↑2))
4140oveq2d 7362 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (1 · ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2)) = (1 · ((𝑁‘(𝐴𝐺𝐵))↑2)))
421, 2, 3, 4, 5ipval2lem3 30683 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴𝐺𝐵))↑2) ∈ ℝ)
4342recnd 11140 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴𝐺𝐵))↑2) ∈ ℂ)
4443mullidd 11130 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (1 · ((𝑁‘(𝐴𝐺𝐵))↑2)) = ((𝑁‘(𝐴𝐺𝐵))↑2))
4541, 44eqtrd 2766 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (1 · ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2)) = ((𝑁‘(𝐴𝐺𝐵))↑2))
4635, 45oveq12d 7364 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) + (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) + (1 · ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2))) = (((i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + ((𝑁‘(𝐴𝐺𝐵))↑2)))
47 nnuz 12775 . . . . . 6 ℕ = (ℤ‘1)
48 df-4 12190 . . . . . 6 4 = (3 + 1)
49 oveq2 7354 . . . . . . . 8 (𝑘 = 4 → (i↑𝑘) = (i↑4))
50 i4 14111 . . . . . . . 8 (i↑4) = 1
5149, 50eqtrdi 2782 . . . . . . 7 (𝑘 = 4 → (i↑𝑘) = 1)
5251oveq1d 7361 . . . . . . . . . 10 (𝑘 = 4 → ((i↑𝑘)𝑆𝐵) = (1𝑆𝐵))
5352oveq2d 7362 . . . . . . . . 9 (𝑘 = 4 → (𝐴𝐺((i↑𝑘)𝑆𝐵)) = (𝐴𝐺(1𝑆𝐵)))
5453fveq2d 6826 . . . . . . . 8 (𝑘 = 4 → (𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵))) = (𝑁‘(𝐴𝐺(1𝑆𝐵))))
5554oveq1d 7361 . . . . . . 7 (𝑘 = 4 → ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2) = ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2))
5651, 55oveq12d 7364 . . . . . 6 (𝑘 = 4 → ((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = (1 · ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2)))
57 nnnn0 12388 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
58 expcl 13986 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (i↑𝑘) ∈ ℂ)
597, 57, 58sylancr 587 . . . . . . . 8 (𝑘 ∈ ℕ → (i↑𝑘) ∈ ℂ)
6059adantl 481 . . . . . . 7 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → (i↑𝑘) ∈ ℂ)
611, 2, 3, 4, 5ipval2lem4 30684 . . . . . . . 8 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ (i↑𝑘) ∈ ℂ) → ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2) ∈ ℂ)
6259, 61sylan2 593 . . . . . . 7 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2) ∈ ℂ)
6360, 62mulcld 11132 . . . . . 6 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) ∈ ℂ)
64 df-3 12189 . . . . . . 7 3 = (2 + 1)
65 oveq2 7354 . . . . . . . . 9 (𝑘 = 3 → (i↑𝑘) = (i↑3))
66 i3 14110 . . . . . . . . 9 (i↑3) = -i
6765, 66eqtrdi 2782 . . . . . . . 8 (𝑘 = 3 → (i↑𝑘) = -i)
6867oveq1d 7361 . . . . . . . . . . 11 (𝑘 = 3 → ((i↑𝑘)𝑆𝐵) = (-i𝑆𝐵))
6968oveq2d 7362 . . . . . . . . . 10 (𝑘 = 3 → (𝐴𝐺((i↑𝑘)𝑆𝐵)) = (𝐴𝐺(-i𝑆𝐵)))
7069fveq2d 6826 . . . . . . . . 9 (𝑘 = 3 → (𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵))) = (𝑁‘(𝐴𝐺(-i𝑆𝐵))))
7170oveq1d 7361 . . . . . . . 8 (𝑘 = 3 → ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2) = ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))
7267, 71oveq12d 7364 . . . . . . 7 (𝑘 = 3 → ((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))
73 df-2 12188 . . . . . . . 8 2 = (1 + 1)
74 oveq2 7354 . . . . . . . . . 10 (𝑘 = 2 → (i↑𝑘) = (i↑2))
75 i2 14109 . . . . . . . . . 10 (i↑2) = -1
7674, 75eqtrdi 2782 . . . . . . . . 9 (𝑘 = 2 → (i↑𝑘) = -1)
7776oveq1d 7361 . . . . . . . . . . . 12 (𝑘 = 2 → ((i↑𝑘)𝑆𝐵) = (-1𝑆𝐵))
7877oveq2d 7362 . . . . . . . . . . 11 (𝑘 = 2 → (𝐴𝐺((i↑𝑘)𝑆𝐵)) = (𝐴𝐺(-1𝑆𝐵)))
7978fveq2d 6826 . . . . . . . . . 10 (𝑘 = 2 → (𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵))) = (𝑁‘(𝐴𝐺(-1𝑆𝐵))))
8079oveq1d 7361 . . . . . . . . 9 (𝑘 = 2 → ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2) = ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))
8176, 80oveq12d 7364 . . . . . . . 8 (𝑘 = 2 → ((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)))
82 1z 12502 . . . . . . . . . 10 1 ∈ ℤ
83 oveq2 7354 . . . . . . . . . . . . 13 (𝑘 = 1 → (i↑𝑘) = (i↑1))
84 exp1 13974 . . . . . . . . . . . . . 14 (i ∈ ℂ → (i↑1) = i)
857, 84ax-mp 5 . . . . . . . . . . . . 13 (i↑1) = i
8683, 85eqtrdi 2782 . . . . . . . . . . . 12 (𝑘 = 1 → (i↑𝑘) = i)
8786oveq1d 7361 . . . . . . . . . . . . . . 15 (𝑘 = 1 → ((i↑𝑘)𝑆𝐵) = (i𝑆𝐵))
8887oveq2d 7362 . . . . . . . . . . . . . 14 (𝑘 = 1 → (𝐴𝐺((i↑𝑘)𝑆𝐵)) = (𝐴𝐺(i𝑆𝐵)))
8988fveq2d 6826 . . . . . . . . . . . . 13 (𝑘 = 1 → (𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵))) = (𝑁‘(𝐴𝐺(i𝑆𝐵))))
9089oveq1d 7361 . . . . . . . . . . . 12 (𝑘 = 1 → ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2) = ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2))
9186, 90oveq12d 7364 . . . . . . . . . . 11 (𝑘 = 1 → ((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = (i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)))
9291fsum1 15654 . . . . . . . . . 10 ((1 ∈ ℤ ∧ (i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) ∈ ℂ) → Σ𝑘 ∈ (1...1)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = (i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)))
9382, 11, 92sylancr 587 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → Σ𝑘 ∈ (1...1)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = (i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)))
94 1nn 12136 . . . . . . . . 9 1 ∈ ℕ
9593, 94jctil 519 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (1 ∈ ℕ ∧ Σ𝑘 ∈ (1...1)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = (i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2))))
96 eqidd 2732 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) = ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))))
9747, 73, 81, 63, 95, 96fsump1i 15676 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (2 ∈ ℕ ∧ Σ𝑘 ∈ (1...2)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)))))
98 eqidd 2732 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) + (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) = (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) + (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))))
9947, 64, 72, 63, 97, 98fsump1i 15676 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (3 ∈ ℕ ∧ Σ𝑘 ∈ (1...3)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) + (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))))
100 eqidd 2732 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) + (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) + (1 · ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2))) = ((((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) + (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) + (1 · ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2))))
10147, 48, 56, 63, 99, 100fsump1i 15676 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (4 ∈ ℕ ∧ Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = ((((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) + (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) + (1 · ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2)))))
102101simprd 495 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = ((((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) + (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) + (1 · ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2))))
10343, 14subcld 11472 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) ∈ ℂ)
1049, 18subcld 11472 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)) ∈ ℂ)
105 mulcl 11090 . . . . . . 7 ((i ∈ ℂ ∧ (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)) ∈ ℂ) → (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) ∈ ℂ)
1067, 104, 105sylancr 587 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) ∈ ℂ)
107103, 106addcomd 11315 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) = ((i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) + (((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))))
108106, 14, 43subadd23d 11494 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + ((𝑁‘(𝐴𝐺𝐵))↑2)) = ((i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) + (((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))))
109107, 108eqtr4d 2769 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) = (((i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + ((𝑁‘(𝐴𝐺𝐵))↑2)))
11046, 102, 1093eqtr4d 2776 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = ((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))))
111110oveq1d 7361 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) / 4) = (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) / 4))
1126, 111eqtrd 2766 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) = (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) / 4))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  cc 11004  1c1 11007  ici 11008   + caddc 11009   · cmul 11011  cmin 11344  -cneg 11345   / cdiv 11774  cn 12125  2c2 12180  3c3 12181  4c4 12182  0cn0 12381  cz 12468  ...cfz 13407  cexp 13968  Σcsu 15593  NrmCVeccnv 30562   +𝑣 cpv 30563  BaseSetcba 30564   ·𝑠OLD cns 30565  normCVcnmcv 30568  ·𝑖OLDcdip 30678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-grpo 30471  df-ablo 30523  df-vc 30537  df-nv 30570  df-va 30573  df-ba 30574  df-sm 30575  df-0v 30576  df-nmcv 30578  df-dip 30679
This theorem is referenced by:  4ipval2  30686  ipval3  30687  ipidsq  30688  dipcj  30692  dip0r  30695
  Copyright terms: Public domain W3C validator