MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipval2 Structured version   Visualization version   GIF version

Theorem ipval2 28021
Description: Expansion of the inner product value ipval 28017. (Contributed by NM, 31-Jan-2007.) (Revised by Mario Carneiro, 5-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dipfval.1 𝑋 = (BaseSet‘𝑈)
dipfval.2 𝐺 = ( +𝑣𝑈)
dipfval.4 𝑆 = ( ·𝑠OLD𝑈)
dipfval.6 𝑁 = (normCV𝑈)
dipfval.7 𝑃 = (·𝑖OLD𝑈)
Assertion
Ref Expression
ipval2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) = (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) / 4))

Proof of Theorem ipval2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 dipfval.1 . . 3 𝑋 = (BaseSet‘𝑈)
2 dipfval.2 . . 3 𝐺 = ( +𝑣𝑈)
3 dipfval.4 . . 3 𝑆 = ( ·𝑠OLD𝑈)
4 dipfval.6 . . 3 𝑁 = (normCV𝑈)
5 dipfval.7 . . 3 𝑃 = (·𝑖OLD𝑈)
61, 2, 3, 4, 5ipval 28017 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) / 4))
7 ax-icn 10250 . . . . . . . . 9 i ∈ ℂ
81, 2, 3, 4, 5ipval2lem4 28020 . . . . . . . . . 10 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ i ∈ ℂ) → ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) ∈ ℂ)
97, 8mpan2 682 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) ∈ ℂ)
10 mulcl 10275 . . . . . . . . 9 ((i ∈ ℂ ∧ ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) ∈ ℂ) → (i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) ∈ ℂ)
117, 9, 10sylancr 581 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) ∈ ℂ)
12 neg1cn 11395 . . . . . . . . 9 -1 ∈ ℂ
131, 2, 3, 4, 5ipval2lem4 28020 . . . . . . . . 9 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ -1 ∈ ℂ) → ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2) ∈ ℂ)
1412, 13mpan2 682 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2) ∈ ℂ)
1511, 14subcld 10648 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) ∈ ℂ)
16 negicn 10538 . . . . . . . . 9 -i ∈ ℂ
171, 2, 3, 4, 5ipval2lem4 28020 . . . . . . . . 9 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ -i ∈ ℂ) → ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2) ∈ ℂ)
1816, 17mpan2 682 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2) ∈ ℂ)
19 mulcl 10275 . . . . . . . 8 ((i ∈ ℂ ∧ ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2) ∈ ℂ) → (i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)) ∈ ℂ)
207, 18, 19sylancr 581 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)) ∈ ℂ)
2115, 20negsubd 10654 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + -(i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) = (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) − (i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))))
2214mulm1d 10738 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = -((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))
2322oveq2d 6860 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) = ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + -((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)))
2411, 14negsubd 10654 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + -((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)))
2523, 24eqtrd 2799 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) = ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)))
26 mulneg1 10722 . . . . . . . 8 ((i ∈ ℂ ∧ ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2) ∈ ℂ) → (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)) = -(i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))
277, 18, 26sylancr 581 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)) = -(i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))
2825, 27oveq12d 6862 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) + (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) = (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + -(i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))))
29 subdi 10719 . . . . . . . . . 10 ((i ∈ ℂ ∧ ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) ∈ ℂ ∧ ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2) ∈ ℂ) → (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) = ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − (i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))))
307, 29mp3an1 1572 . . . . . . . . 9 ((((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) ∈ ℂ ∧ ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2) ∈ ℂ) → (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) = ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − (i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))))
319, 18, 30syl2anc 579 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) = ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − (i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))))
3231oveq1d 6859 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − (i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)))
3311, 20, 14sub32d 10680 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − (i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) − (i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))))
3432, 33eqtrd 2799 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) − (i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))))
3521, 28, 343eqtr4d 2809 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) + (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) = ((i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)))
361, 3nvsid 27941 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (1𝑆𝐵) = 𝐵)
3736oveq2d 6860 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (𝐴𝐺(1𝑆𝐵)) = (𝐴𝐺𝐵))
3837fveq2d 6381 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (𝑁‘(𝐴𝐺(1𝑆𝐵))) = (𝑁‘(𝐴𝐺𝐵)))
3938oveq1d 6859 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2) = ((𝑁‘(𝐴𝐺𝐵))↑2))
40393adant2 1161 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2) = ((𝑁‘(𝐴𝐺𝐵))↑2))
4140oveq2d 6860 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (1 · ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2)) = (1 · ((𝑁‘(𝐴𝐺𝐵))↑2)))
421, 2, 3, 4, 5ipval2lem3 28019 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴𝐺𝐵))↑2) ∈ ℝ)
4342recnd 10324 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴𝐺𝐵))↑2) ∈ ℂ)
4443mulid2d 10314 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (1 · ((𝑁‘(𝐴𝐺𝐵))↑2)) = ((𝑁‘(𝐴𝐺𝐵))↑2))
4541, 44eqtrd 2799 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (1 · ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2)) = ((𝑁‘(𝐴𝐺𝐵))↑2))
4635, 45oveq12d 6862 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) + (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) + (1 · ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2))) = (((i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + ((𝑁‘(𝐴𝐺𝐵))↑2)))
47 nnuz 11926 . . . . . 6 ℕ = (ℤ‘1)
48 df-4 11339 . . . . . 6 4 = (3 + 1)
49 oveq2 6852 . . . . . . . 8 (𝑘 = 4 → (i↑𝑘) = (i↑4))
50 i4 13177 . . . . . . . 8 (i↑4) = 1
5149, 50syl6eq 2815 . . . . . . 7 (𝑘 = 4 → (i↑𝑘) = 1)
5251oveq1d 6859 . . . . . . . . . 10 (𝑘 = 4 → ((i↑𝑘)𝑆𝐵) = (1𝑆𝐵))
5352oveq2d 6860 . . . . . . . . 9 (𝑘 = 4 → (𝐴𝐺((i↑𝑘)𝑆𝐵)) = (𝐴𝐺(1𝑆𝐵)))
5453fveq2d 6381 . . . . . . . 8 (𝑘 = 4 → (𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵))) = (𝑁‘(𝐴𝐺(1𝑆𝐵))))
5554oveq1d 6859 . . . . . . 7 (𝑘 = 4 → ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2) = ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2))
5651, 55oveq12d 6862 . . . . . 6 (𝑘 = 4 → ((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = (1 · ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2)))
57 nnnn0 11548 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
58 expcl 13088 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (i↑𝑘) ∈ ℂ)
597, 57, 58sylancr 581 . . . . . . . 8 (𝑘 ∈ ℕ → (i↑𝑘) ∈ ℂ)
6059adantl 473 . . . . . . 7 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → (i↑𝑘) ∈ ℂ)
611, 2, 3, 4, 5ipval2lem4 28020 . . . . . . . 8 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ (i↑𝑘) ∈ ℂ) → ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2) ∈ ℂ)
6259, 61sylan2 586 . . . . . . 7 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2) ∈ ℂ)
6360, 62mulcld 10316 . . . . . 6 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) ∈ ℂ)
64 df-3 11338 . . . . . . 7 3 = (2 + 1)
65 oveq2 6852 . . . . . . . . 9 (𝑘 = 3 → (i↑𝑘) = (i↑3))
66 i3 13176 . . . . . . . . 9 (i↑3) = -i
6765, 66syl6eq 2815 . . . . . . . 8 (𝑘 = 3 → (i↑𝑘) = -i)
6867oveq1d 6859 . . . . . . . . . . 11 (𝑘 = 3 → ((i↑𝑘)𝑆𝐵) = (-i𝑆𝐵))
6968oveq2d 6860 . . . . . . . . . 10 (𝑘 = 3 → (𝐴𝐺((i↑𝑘)𝑆𝐵)) = (𝐴𝐺(-i𝑆𝐵)))
7069fveq2d 6381 . . . . . . . . 9 (𝑘 = 3 → (𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵))) = (𝑁‘(𝐴𝐺(-i𝑆𝐵))))
7170oveq1d 6859 . . . . . . . 8 (𝑘 = 3 → ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2) = ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))
7267, 71oveq12d 6862 . . . . . . 7 (𝑘 = 3 → ((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))
73 df-2 11337 . . . . . . . 8 2 = (1 + 1)
74 oveq2 6852 . . . . . . . . . 10 (𝑘 = 2 → (i↑𝑘) = (i↑2))
75 i2 13175 . . . . . . . . . 10 (i↑2) = -1
7674, 75syl6eq 2815 . . . . . . . . 9 (𝑘 = 2 → (i↑𝑘) = -1)
7776oveq1d 6859 . . . . . . . . . . . 12 (𝑘 = 2 → ((i↑𝑘)𝑆𝐵) = (-1𝑆𝐵))
7877oveq2d 6860 . . . . . . . . . . 11 (𝑘 = 2 → (𝐴𝐺((i↑𝑘)𝑆𝐵)) = (𝐴𝐺(-1𝑆𝐵)))
7978fveq2d 6381 . . . . . . . . . 10 (𝑘 = 2 → (𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵))) = (𝑁‘(𝐴𝐺(-1𝑆𝐵))))
8079oveq1d 6859 . . . . . . . . 9 (𝑘 = 2 → ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2) = ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))
8176, 80oveq12d 6862 . . . . . . . 8 (𝑘 = 2 → ((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)))
82 1z 11657 . . . . . . . . . 10 1 ∈ ℤ
83 oveq2 6852 . . . . . . . . . . . . 13 (𝑘 = 1 → (i↑𝑘) = (i↑1))
84 exp1 13076 . . . . . . . . . . . . . 14 (i ∈ ℂ → (i↑1) = i)
857, 84ax-mp 5 . . . . . . . . . . . . 13 (i↑1) = i
8683, 85syl6eq 2815 . . . . . . . . . . . 12 (𝑘 = 1 → (i↑𝑘) = i)
8786oveq1d 6859 . . . . . . . . . . . . . . 15 (𝑘 = 1 → ((i↑𝑘)𝑆𝐵) = (i𝑆𝐵))
8887oveq2d 6860 . . . . . . . . . . . . . 14 (𝑘 = 1 → (𝐴𝐺((i↑𝑘)𝑆𝐵)) = (𝐴𝐺(i𝑆𝐵)))
8988fveq2d 6381 . . . . . . . . . . . . 13 (𝑘 = 1 → (𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵))) = (𝑁‘(𝐴𝐺(i𝑆𝐵))))
9089oveq1d 6859 . . . . . . . . . . . 12 (𝑘 = 1 → ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2) = ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2))
9186, 90oveq12d 6862 . . . . . . . . . . 11 (𝑘 = 1 → ((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = (i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)))
9291fsum1 14764 . . . . . . . . . 10 ((1 ∈ ℤ ∧ (i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) ∈ ℂ) → Σ𝑘 ∈ (1...1)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = (i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)))
9382, 11, 92sylancr 581 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → Σ𝑘 ∈ (1...1)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = (i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)))
94 1nn 11289 . . . . . . . . 9 1 ∈ ℕ
9593, 94jctil 515 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (1 ∈ ℕ ∧ Σ𝑘 ∈ (1...1)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = (i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2))))
96 eqidd 2766 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) = ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))))
9747, 73, 81, 63, 95, 96fsump1i 14788 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (2 ∈ ℕ ∧ Σ𝑘 ∈ (1...2)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)))))
98 eqidd 2766 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) + (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) = (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) + (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))))
9947, 64, 72, 63, 97, 98fsump1i 14788 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (3 ∈ ℕ ∧ Σ𝑘 ∈ (1...3)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) + (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))))
100 eqidd 2766 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) + (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) + (1 · ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2))) = ((((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) + (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) + (1 · ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2))))
10147, 48, 56, 63, 99, 100fsump1i 14788 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (4 ∈ ℕ ∧ Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = ((((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) + (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) + (1 · ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2)))))
102101simprd 489 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = ((((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) + (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) + (1 · ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2))))
10343, 14subcld 10648 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) ∈ ℂ)
1049, 18subcld 10648 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)) ∈ ℂ)
105 mulcl 10275 . . . . . . 7 ((i ∈ ℂ ∧ (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)) ∈ ℂ) → (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) ∈ ℂ)
1067, 104, 105sylancr 581 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) ∈ ℂ)
107103, 106addcomd 10494 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) = ((i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) + (((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))))
108106, 14, 43subadd23d 10670 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + ((𝑁‘(𝐴𝐺𝐵))↑2)) = ((i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) + (((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))))
109107, 108eqtr4d 2802 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) = (((i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + ((𝑁‘(𝐴𝐺𝐵))↑2)))
11046, 102, 1093eqtr4d 2809 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = ((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))))
111110oveq1d 6859 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) / 4) = (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) / 4))
1126, 111eqtrd 2799 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) = (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) / 4))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1107   = wceq 1652  wcel 2155  cfv 6070  (class class class)co 6844  cc 10189  1c1 10192  ici 10193   + caddc 10194   · cmul 10196  cmin 10522  -cneg 10523   / cdiv 10940  cn 11276  2c2 11329  3c3 11330  4c4 11331  0cn0 11540  cz 11626  ...cfz 12536  cexp 13070  Σcsu 14704  NrmCVeccnv 27898   +𝑣 cpv 27899  BaseSetcba 27900   ·𝑠OLD cns 27901  normCVcnmcv 27904  ·𝑖OLDcdip 28014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149  ax-inf2 8755  ax-cnex 10247  ax-resscn 10248  ax-1cn 10249  ax-icn 10250  ax-addcl 10251  ax-addrcl 10252  ax-mulcl 10253  ax-mulrcl 10254  ax-mulcom 10255  ax-addass 10256  ax-mulass 10257  ax-distr 10258  ax-i2m1 10259  ax-1ne0 10260  ax-1rid 10261  ax-rnegex 10262  ax-rrecex 10263  ax-cnre 10264  ax-pre-lttri 10265  ax-pre-lttrn 10266  ax-pre-ltadd 10267  ax-pre-mulgt0 10268  ax-pre-sup 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-se 5239  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-isom 6079  df-riota 6805  df-ov 6847  df-oprab 6848  df-mpt2 6849  df-om 7266  df-1st 7368  df-2nd 7369  df-wrecs 7612  df-recs 7674  df-rdg 7712  df-1o 7766  df-oadd 7770  df-er 7949  df-en 8163  df-dom 8164  df-sdom 8165  df-fin 8166  df-sup 8557  df-oi 8624  df-card 9018  df-pnf 10332  df-mnf 10333  df-xr 10334  df-ltxr 10335  df-le 10336  df-sub 10524  df-neg 10525  df-div 10941  df-nn 11277  df-2 11337  df-3 11338  df-4 11339  df-n0 11541  df-z 11627  df-uz 11890  df-rp 12032  df-fz 12537  df-fzo 12677  df-seq 13012  df-exp 13071  df-hash 13325  df-cj 14127  df-re 14128  df-im 14129  df-sqrt 14263  df-abs 14264  df-clim 14507  df-sum 14705  df-grpo 27807  df-ablo 27859  df-vc 27873  df-nv 27906  df-va 27909  df-ba 27910  df-sm 27911  df-0v 27912  df-nmcv 27914  df-dip 28015
This theorem is referenced by:  4ipval2  28022  ipval3  28023  ipidsq  28024  dipcj  28028  dip0r  28031
  Copyright terms: Public domain W3C validator