| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3lt4 | Structured version Visualization version GIF version | ||
| Description: 3 is less than 4. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| 3lt4 | ⊢ 3 < 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3re 12242 | . . 3 ⊢ 3 ∈ ℝ | |
| 2 | 1 | ltp1i 12063 | . 2 ⊢ 3 < (3 + 1) |
| 3 | df-4 12227 | . 2 ⊢ 4 = (3 + 1) | |
| 4 | 2, 3 | breqtrri 5129 | 1 ⊢ 3 < 4 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5102 (class class class)co 7369 1c1 11045 + caddc 11047 < clt 11184 3c3 12218 4c4 12219 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-2 12225 df-3 12226 df-4 12227 |
| This theorem is referenced by: 2lt4 12332 3lt5 12335 3lt6 12340 3lt7 12346 3lt8 12353 3lt9 12361 3halfnz 12589 3lt10 12762 uzuzle34 12821 fldiv4p1lem1div2 13773 bpoly4 16001 ef01bndlem 16128 sin01bnd 16129 flodddiv4 16361 starvndxnmulrndx 17245 srngstr 17248 dveflem 25859 tangtx 26390 ppiublem1 27089 bpos1 27170 bposlem2 27172 gausslemma2dlem4 27256 2lgslem3b 27284 2lgslem3d 27286 chebbnd1lem2 27357 chebbnd1lem3 27358 chebbnd1 27359 pntlemb 27484 usgrexmplef 29162 upgr4cycl4dv4e 30087 ex-fl 30349 aks4d1p1p7 42035 aks4d1p1p5 42036 stoweidlem26 45997 stoweid 46034 mod42tp1mod8 47576 nnsum4primes4 47763 nnsum4primesprm 47765 nnsum4primesgbe 47767 nnsum4primesle9 47769 nnsum4primeseven 47774 nnsum4primesevenALTV 47775 wtgoldbnnsum4prm 47776 usgrexmpl1lem 47985 usgrexmpl2lem 47990 usgrexmpl2nb3 47998 usgrexmpl2nb4 47999 usgrexmpl2trifr 48001 gpgprismgr4cycllem7 48064 gpgprismgr4cycllem10 48067 ackval42 48658 |
| Copyright terms: Public domain | W3C validator |