![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3lt4 | Structured version Visualization version GIF version |
Description: 3 is less than 4. (Contributed by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
3lt4 | ⊢ 3 < 4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3re 12325 | . . 3 ⊢ 3 ∈ ℝ | |
2 | 1 | ltp1i 12151 | . 2 ⊢ 3 < (3 + 1) |
3 | df-4 12310 | . 2 ⊢ 4 = (3 + 1) | |
4 | 2, 3 | breqtrri 5176 | 1 ⊢ 3 < 4 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5149 (class class class)co 7419 1c1 11141 + caddc 11143 < clt 11280 3c3 12301 4c4 12302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-2 12308 df-3 12309 df-4 12310 |
This theorem is referenced by: 2lt4 12420 3lt5 12423 3lt6 12428 3lt7 12434 3lt8 12441 3lt9 12449 3halfnz 12674 3lt10 12847 fz0to4untppr 13639 fldiv4p1lem1div2 13836 bpoly4 16039 ef01bndlem 16164 sin01bnd 16165 flodddiv4 16393 starvndxnmulrndx 17290 srngstr 17293 cnfldfunALTOLDOLD 21325 dveflem 25955 tangtx 26485 ppiublem1 27180 bpos1 27261 bposlem2 27263 gausslemma2dlem4 27347 2lgslem3b 27375 2lgslem3d 27377 chebbnd1lem2 27448 chebbnd1lem3 27449 chebbnd1 27450 pntlemb 27575 usgrexmplef 29144 upgr4cycl4dv4e 30067 ex-fl 30329 hlhilsmulOLD 41545 aks4d1p1p7 41674 aks4d1p1p5 41675 stoweidlem26 45549 stoweid 45586 mod42tp1mod8 47076 nnsum4primes4 47263 nnsum4primesprm 47265 nnsum4primesgbe 47267 nnsum4primesle9 47269 nnsum4primeseven 47274 nnsum4primesevenALTV 47275 wtgoldbnnsum4prm 47276 ackval42 47952 |
Copyright terms: Public domain | W3C validator |