| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3lt4 | Structured version Visualization version GIF version | ||
| Description: 3 is less than 4. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| 3lt4 | ⊢ 3 < 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3re 12205 | . . 3 ⊢ 3 ∈ ℝ | |
| 2 | 1 | ltp1i 12026 | . 2 ⊢ 3 < (3 + 1) |
| 3 | df-4 12190 | . 2 ⊢ 4 = (3 + 1) | |
| 4 | 2, 3 | breqtrri 5116 | 1 ⊢ 3 < 4 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5089 (class class class)co 7346 1c1 11007 + caddc 11009 < clt 11146 3c3 12181 4c4 12182 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-2 12188 df-3 12189 df-4 12190 |
| This theorem is referenced by: 2lt4 12295 3lt5 12298 3lt6 12303 3lt7 12309 3lt8 12316 3lt9 12324 3halfnz 12552 3lt10 12725 uzuzle34 12784 fldiv4p1lem1div2 13739 bpoly4 15966 ef01bndlem 16093 sin01bnd 16094 flodddiv4 16326 starvndxnmulrndx 17210 srngstr 17213 dveflem 25910 tangtx 26441 ppiublem1 27140 bpos1 27221 bposlem2 27223 gausslemma2dlem4 27307 2lgslem3b 27335 2lgslem3d 27337 chebbnd1lem2 27408 chebbnd1lem3 27409 chebbnd1 27410 pntlemb 27535 usgrexmplef 29237 upgr4cycl4dv4e 30165 ex-fl 30427 aks4d1p1p7 42177 aks4d1p1p5 42178 stoweidlem26 46134 stoweid 46171 mod42tp1mod8 47712 nnsum4primes4 47899 nnsum4primesprm 47901 nnsum4primesgbe 47903 nnsum4primesle9 47905 nnsum4primeseven 47910 nnsum4primesevenALTV 47911 wtgoldbnnsum4prm 47912 usgrexmpl1lem 48131 usgrexmpl2lem 48136 usgrexmpl2nb3 48144 usgrexmpl2nb4 48145 usgrexmpl2trifr 48147 gpgprismgr4cycllem7 48211 gpgprismgr4cycllem10 48214 ackval42 48807 |
| Copyright terms: Public domain | W3C validator |