![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3lt4 | Structured version Visualization version GIF version |
Description: 3 is less than 4. (Contributed by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
3lt4 | ⊢ 3 < 4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3re 12344 | . . 3 ⊢ 3 ∈ ℝ | |
2 | 1 | ltp1i 12170 | . 2 ⊢ 3 < (3 + 1) |
3 | df-4 12329 | . 2 ⊢ 4 = (3 + 1) | |
4 | 2, 3 | breqtrri 5175 | 1 ⊢ 3 < 4 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5148 (class class class)co 7431 1c1 11154 + caddc 11156 < clt 11293 3c3 12320 4c4 12321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-2 12327 df-3 12328 df-4 12329 |
This theorem is referenced by: 2lt4 12439 3lt5 12442 3lt6 12447 3lt7 12453 3lt8 12460 3lt9 12468 3halfnz 12695 3lt10 12868 eluz4eluz3 12924 fldiv4p1lem1div2 13872 bpoly4 16092 ef01bndlem 16217 sin01bnd 16218 flodddiv4 16449 starvndxnmulrndx 17352 srngstr 17355 cnfldfunALTOLDOLD 21411 dveflem 26032 tangtx 26562 ppiublem1 27261 bpos1 27342 bposlem2 27344 gausslemma2dlem4 27428 2lgslem3b 27456 2lgslem3d 27458 chebbnd1lem2 27529 chebbnd1lem3 27530 chebbnd1 27531 pntlemb 27656 usgrexmplef 29291 upgr4cycl4dv4e 30214 ex-fl 30476 hlhilsmulOLD 41928 aks4d1p1p7 42056 aks4d1p1p5 42057 stoweidlem26 45982 stoweid 46019 mod42tp1mod8 47527 nnsum4primes4 47714 nnsum4primesprm 47716 nnsum4primesgbe 47718 nnsum4primesle9 47720 nnsum4primeseven 47725 nnsum4primesevenALTV 47726 wtgoldbnnsum4prm 47727 usgrexmpl1lem 47916 usgrexmpl2lem 47921 usgrexmpl2nb3 47929 usgrexmpl2nb4 47930 usgrexmpl2trifr 47932 ackval42 48546 |
Copyright terms: Public domain | W3C validator |