| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3lt4 | Structured version Visualization version GIF version | ||
| Description: 3 is less than 4. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| 3lt4 | ⊢ 3 < 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3re 12266 | . . 3 ⊢ 3 ∈ ℝ | |
| 2 | 1 | ltp1i 12087 | . 2 ⊢ 3 < (3 + 1) |
| 3 | df-4 12251 | . 2 ⊢ 4 = (3 + 1) | |
| 4 | 2, 3 | breqtrri 5134 | 1 ⊢ 3 < 4 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5107 (class class class)co 7387 1c1 11069 + caddc 11071 < clt 11208 3c3 12242 4c4 12243 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-2 12249 df-3 12250 df-4 12251 |
| This theorem is referenced by: 2lt4 12356 3lt5 12359 3lt6 12364 3lt7 12370 3lt8 12377 3lt9 12385 3halfnz 12613 3lt10 12786 uzuzle34 12845 fldiv4p1lem1div2 13797 bpoly4 16025 ef01bndlem 16152 sin01bnd 16153 flodddiv4 16385 starvndxnmulrndx 17269 srngstr 17272 dveflem 25883 tangtx 26414 ppiublem1 27113 bpos1 27194 bposlem2 27196 gausslemma2dlem4 27280 2lgslem3b 27308 2lgslem3d 27310 chebbnd1lem2 27381 chebbnd1lem3 27382 chebbnd1 27383 pntlemb 27508 usgrexmplef 29186 upgr4cycl4dv4e 30114 ex-fl 30376 aks4d1p1p7 42062 aks4d1p1p5 42063 stoweidlem26 46024 stoweid 46061 mod42tp1mod8 47603 nnsum4primes4 47790 nnsum4primesprm 47792 nnsum4primesgbe 47794 nnsum4primesle9 47796 nnsum4primeseven 47801 nnsum4primesevenALTV 47802 wtgoldbnnsum4prm 47803 usgrexmpl1lem 48012 usgrexmpl2lem 48017 usgrexmpl2nb3 48025 usgrexmpl2nb4 48026 usgrexmpl2trifr 48028 gpgprismgr4cycllem7 48091 gpgprismgr4cycllem10 48094 ackval42 48685 |
| Copyright terms: Public domain | W3C validator |