Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3lt4 | Structured version Visualization version GIF version |
Description: 3 is less than 4. (Contributed by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
3lt4 | ⊢ 3 < 4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3re 12036 | . . 3 ⊢ 3 ∈ ℝ | |
2 | 1 | ltp1i 11862 | . 2 ⊢ 3 < (3 + 1) |
3 | df-4 12021 | . 2 ⊢ 4 = (3 + 1) | |
4 | 2, 3 | breqtrri 5105 | 1 ⊢ 3 < 4 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5078 (class class class)co 7268 1c1 10856 + caddc 10858 < clt 10993 3c3 12012 4c4 12013 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-po 5502 df-so 5503 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-2 12019 df-3 12020 df-4 12021 |
This theorem is referenced by: 2lt4 12131 3lt5 12134 3lt6 12139 3lt7 12145 3lt8 12152 3lt9 12160 3halfnz 12382 3lt10 12556 fz0to4untppr 13341 fldiv4p1lem1div2 13536 bpoly4 15750 ef01bndlem 15874 sin01bnd 15875 flodddiv4 16103 starvndxnmulrndx 16997 srngstr 17000 cnfldfunOLD 20591 dveflem 25124 tangtx 25643 ppiublem1 26331 bpos1 26412 bposlem2 26414 gausslemma2dlem4 26498 2lgslem3b 26526 2lgslem3d 26528 chebbnd1lem2 26599 chebbnd1lem3 26600 chebbnd1 26601 pntlemb 26726 usgrexmplef 27607 upgr4cycl4dv4e 28528 ex-fl 28790 hlhilsmulOLD 39938 aks4d1p1p7 40062 aks4d1p1p5 40063 stoweidlem26 43521 stoweid 43558 mod42tp1mod8 45006 nnsum4primes4 45193 nnsum4primesprm 45195 nnsum4primesgbe 45197 nnsum4primesle9 45199 nnsum4primeseven 45204 nnsum4primesevenALTV 45205 wtgoldbnnsum4prm 45206 ackval42 45994 |
Copyright terms: Public domain | W3C validator |