| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3lt4 | Structured version Visualization version GIF version | ||
| Description: 3 is less than 4. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| 3lt4 | ⊢ 3 < 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3re 12208 | . . 3 ⊢ 3 ∈ ℝ | |
| 2 | 1 | ltp1i 12029 | . 2 ⊢ 3 < (3 + 1) |
| 3 | df-4 12193 | . 2 ⊢ 4 = (3 + 1) | |
| 4 | 2, 3 | breqtrri 5119 | 1 ⊢ 3 < 4 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5092 (class class class)co 7349 1c1 11010 + caddc 11012 < clt 11149 3c3 12184 4c4 12185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-2 12191 df-3 12192 df-4 12193 |
| This theorem is referenced by: 2lt4 12298 3lt5 12301 3lt6 12306 3lt7 12312 3lt8 12319 3lt9 12327 3halfnz 12555 3lt10 12728 uzuzle34 12787 fldiv4p1lem1div2 13739 bpoly4 15966 ef01bndlem 16093 sin01bnd 16094 flodddiv4 16326 starvndxnmulrndx 17210 srngstr 17213 dveflem 25881 tangtx 26412 ppiublem1 27111 bpos1 27192 bposlem2 27194 gausslemma2dlem4 27278 2lgslem3b 27306 2lgslem3d 27308 chebbnd1lem2 27379 chebbnd1lem3 27380 chebbnd1 27381 pntlemb 27506 usgrexmplef 29204 upgr4cycl4dv4e 30129 ex-fl 30391 aks4d1p1p7 42051 aks4d1p1p5 42052 stoweidlem26 46011 stoweid 46048 mod42tp1mod8 47590 nnsum4primes4 47777 nnsum4primesprm 47779 nnsum4primesgbe 47781 nnsum4primesle9 47783 nnsum4primeseven 47788 nnsum4primesevenALTV 47789 wtgoldbnnsum4prm 47790 usgrexmpl1lem 48009 usgrexmpl2lem 48014 usgrexmpl2nb3 48022 usgrexmpl2nb4 48023 usgrexmpl2trifr 48025 gpgprismgr4cycllem7 48089 gpgprismgr4cycllem10 48092 ackval42 48685 |
| Copyright terms: Public domain | W3C validator |