| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 8p4e12 | Structured version Visualization version GIF version | ||
| Description: 8 + 4 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 8p4e12 | ⊢ (8 + 4) = ;12 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 8nn0 12517 | . 2 ⊢ 8 ∈ ℕ0 | |
| 2 | 3nn0 12512 | . 2 ⊢ 3 ∈ ℕ0 | |
| 3 | 1nn0 12510 | . 2 ⊢ 1 ∈ ℕ0 | |
| 4 | df-4 12298 | . 2 ⊢ 4 = (3 + 1) | |
| 5 | df-2 12296 | . 2 ⊢ 2 = (1 + 1) | |
| 6 | 8p3e11 12782 | . 2 ⊢ (8 + 3) = ;11 | |
| 7 | 1, 2, 3, 4, 5, 6 | 6p5lem 12771 | 1 ⊢ (8 + 4) = ;12 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 (class class class)co 7400 1c1 11123 + caddc 11125 2c2 12288 3c3 12289 4c4 12290 8c8 12294 ;cdc 12701 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-ov 7403 df-om 7857 df-2nd 7984 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-er 8714 df-en 8955 df-dom 8956 df-sdom 8957 df-pnf 11264 df-mnf 11265 df-ltxr 11267 df-nn 12234 df-2 12296 df-3 12297 df-4 12298 df-5 12299 df-6 12300 df-7 12301 df-8 12302 df-9 12303 df-n0 12495 df-dec 12702 |
| This theorem is referenced by: 8p5e13 12784 4t3e12 12799 8t4e32 12818 1259lem3 17139 1259lem4 17140 1259lem5 17141 2503lem1 17143 2503lem2 17144 4001lem4 17150 log2ub 26897 3exp7 41995 fmtno5fac 47522 nnsum4primesevenALTV 47741 |
| Copyright terms: Public domain | W3C validator |